REGRESSION MODELS WITH RESPONSES ON THE UNITY INTERVAL: SPECIFICATION, ESTIMATION AND COMPARISON

Wagner Hugo BONAT¹
Paulo Justiniano RIBEIRO JR¹
Walmes Marques ZEVIANI¹

ABSTRACT: Regression models are widely used on a diversity of application areas to describe associations between explanatory and response variables. The initially and frequently adopted Gaussian linear model was gradually extended to accommodate different kinds of response variables. These models were latter described as particular cases of the generalized linear models (GLM). The GLM family allows for a diversity of formats for the response variable and functions linking the parameters of the distribution to a linear predictor. This model structure became a benchmark for several further extensions and developments in statistical modelling such as generalized additive, overdispersed, zero inflated, among other models. Response variables with values restricted to an interval, often (0, 1), are usual in social sciences, agronomy, psychometrics among other areas. Beta or Simplex distributions are often used although other options are mentioned in the literature. In this paper, a generic structure is used to define a set of regression models for restricted response variables, not only including the usually assumed formats but allowing for a wider range of models. Individual models are defined by choosing three components: the probability distribution for the response; the function linking the parameter of the distribution of choice with the linear predictor; and the transformation function for the response. We report results of the analysis of four different datasets considering Beta, Simplex, Kumaraswamy and Gaussian distributions. For the link and transformation functions the logit, probit, complementary log-log, log-log, Cauchit and Aranda-Ordaz are considered. Likelihood based analysis for model fitting, comparison and model choice are carried out on a unified way and a computer code is made available. Results show there is no prominent model within this class highlighting the importance of investigating a wide range of models for each problem at hand.

¹Universidade Federal do Paraná – UFPR, Departamento de Estatística – DEST, Laboratório de Estatística e Geoinformação – LEG, CEP: 81531-990, Curitiba, Paraná, Brasil. E-mail: wagner@leg.ufpr.br / paulojus@leg.ufpr.br / walmes@leg.ufpr.br
1 Introduction

Widespread modelling by statistical regression started with the classic linear Gaussian model as the main tool to investigate relations between a response variable with possible explanatory variables. Despite of being largely used, the model has severe limitations for non Gaussian responses for which other models were gradually developed. Nelder & Wedderburn (1972) and McCullagh & Nelder (1989) are benchmarks for advances in regression models, unifying several model specifications under the flexible class of generalised linear models (GLM).

It is possible to build appropriate models for different types of responses such as binary, count, polytomous and continuous variables under the GLM structure. It is also possible to model both, the mean and the dispersion parameters as function of covariates. Starting from the explicit specification of a model within this class, generic forms for the likelihood function follows directly, allowing for standard point and interval estimation and the construction of hypothesis tests and model comparison measures. In summary, all the elements needed for the practice of statistical modelling.

Although flexible, the GLM’s have limitations for response variables with values confined within an interval \((a, b)\), usually the unity \((0, 1)\) interval. Such kind of data is common to several areas. Examples in social sciences include indexes such as human development, life quality and measures of well-being. For such situations values of an observable or latent scale are bounded below and above. Latent variables such as IQ, degree of agreement with an opinion and level of skills are common in psychometrics’ tests. Yet another example is the case of a continuous proportion of a whole, such as the percentage of the budget spent with food, one of the examples considered here. Crop or tissue disease levels are expressed as percentages in agronomic sciences. Response variables restricted to the \((a, b)\) interval can always be represented in the unity interval for the analysis with results expressed back in the original scale if necessary.

Extended forms of GLM’s are proposed in the literature. Kieschinick & McCullough (2003) revises alternative model building approaches for responses on restricted intervals. They consider the classical linear regression model, which ignores the natural restriction and the heterocedasticity, the restricted domain Beta and Simplex models and semi-parametric models estimated by quasi-likelihood methods. Based on the analysis of real data they consider the Beta regression as a standard choice. Ferrari & Cribari-Neto (2004) provides a more detailed mathematical and computational description of the Beta regression model including the analysis of residuals. Further developments follows in the literature. Mean and dispersion modelling is adopted by Cepeda & Gamerman (2005) and Simas et al. (2010). Analysis of residuals and diagnostics are presented by Espinheira et al. (2008a), Espinheira et al. (2008b) and Rocha & Simas (2010). Bias correction

The Beta regression model is implemented by the betareg (Cribari-Neto & Zeileis, 2010) package for the R software (R Development Core Team, 2013). Extended functionalities are described by Grun et al. (2011) including bias corrections, recursive partitioning and finite mixture models. McKenzie (1985), Grunwald et al. (1993) and Rocha & Simas (2010) provide further developments for time series analysis. Da-Silva et al. (2011) presents a Bayesian dynamic Beta for modelling and forecasting Brazilian unemployment rates. Bonat et al. (2013) includes random effects to model dependence structures which occur in repeated measures and longitudinal studies, among others.

Despite the dissemination of Beta regression, there are few comparisons with alternative and less adopted approaches such as the Simplex (Miyashiro, 2008), the Kumaraswamy (Lemonte et al., 2013) or even the Gaussian model for transformed responses. An example of the latter is the logit transformation of data to the (0, 1) interval which return values on the real line and then modelled by the Gaussian distribution. McCullagh & Nelder (1989, pg. 378) briefly discuss the differences between specifying Gaussian models for transformed responses versus adopting other probabilities distributions. The transformation is required to ensure additive effects and constant variance, however uniqueness and existence of transformation cannot be guaranteed.

GLM offers an attractive option accommodating both, structures for covariate effects and mean variance relationships determined by the choice of the probability distribution for the response. The classical Box-Cox (Box & Cox, 1964) family defines power transformations which are not directly applicable to responses on restricted intervals. Another possibility is its usage as a link function for a GLM.

We follow a specification for regression models for responses on the unity interval which is generic in the sense that previously mentioned models are particular cases. Under this generic form we present and compare different model specifications. We show that a wide class of models can be considered under a common framework instead of adopting a particular choice of model for data analysis. Based on likelihood estimation we compare models for real data from agronomic and social sciences. Specification of each individual model consists of choices for the three basic components in the generic model format. Combining them allows for a diversity of options for distribution of the response variable and relations with the covariates, including non-linear models.

The generic specification is presented in the next Section. It is followed by the analysis of the case studies on different contexts and focusing on model comparisons. We conclude with a general discussion and recommendations for the practice of data analysis and point some possible future directions.
2 Model specification

Assume the following model format for independent response variables Y_i:

$$T(Y_i|x_i; \lambda) \sim d(\mu_i, \phi)$$

$$\mu_i = f(x_i, \beta x; \delta);$$ \hspace{1cm} (1)

where x_i is a vector of covariates associated to the i^{th} observation and $\theta = (\lambda, \phi, \beta x, \delta)$ are model parameters.

An individual model is defined by choices of functions $d(\cdot)$, $T(\cdot)$ and $f(\cdot)$. The first defines a two parameter probability distribution for the response variable. The location parameter μ_i is typically the expectation or median of the response variable or, more generally, any quantity to be related to the covariates. The dispersion parameter ϕ is simply regarded here as an extra parameter in the likelihood, though more generally may also be modelled by covariates. Choices for $d(\cdot)$ imposes restrictions on possible choices for the remaining functions.

The second, $T(\cdot)$, defines a transformation of the response and the function can be indexed by a shape parameter λ. This function is required to have a $(0, 1)$ domain and counter-domain compatible with $d(\cdot)$. The link function $f(\cdot)$ depends on a (vector) parameter βx associated to the covariates and a shape parameter δ. This function has a real domain to allow for any value for the covariates and counter domain in the parameter space of μ_i. For simplicity we assume that $T(\cdot)$ and $f(\cdot)$ are monotone and twice differentiable.

The likelihood function for a given random sample has the form:

$$L(\theta; y) = \prod_{i=1}^{n} d(f(x_i, \beta x, \delta), \phi) \left| \frac{\partial T(Y_i|x_i, \lambda)}{\partial Y_i} \right|. \hspace{1cm} (2)$$

Parameter estimates of $\theta = (\beta x, \delta, \lambda, \phi)$ are obtained by maximization of (2). The likelihood function is also used to obtain confidence intervals with usual options of quadratic approximation (Wald type) or profiled likelihoods. The likelihood is a measure of compatibility of the model with the actual data and can be used to compare choices for $T(\cdot)$, $d(\cdot)$ and $f(\cdot)$. Under general conditions, models with the same dimension, i.e. same number of parameters, can be directly compared by the maximised values of the likelihoods whereas nested models can be compared by likelihood ratio tests. Otherwise, alternative criteria such as the Akaike’s (AIC) or BIC can be used for model comparison and choice.

Expressions for the score function, observed and expected information are obtained from (2) for each particular model specification. Closed expressions for estimating the parameters in θ cannot be obtained in general and, for some cases, even expressions for the gradient and hessian functions are not available. Maximisation of (2) usually requires numerical methods and algorithms must be carefully calibrated to ensure convergence.

Algorithms\footnote{available at http://www.leg.ufpr.br/papercompanions/regression01} implemented in the R language (R Development Core Team, 2013) are used for the analyses reported here and follows principles described by Bonat 418 Rev. Bras. Biom., São Paulo, v.30, n.4, p.415-431, 2012
et al. (2012). A function is defined to return log-likelihood values for the general model format. Maximization uses R’s native algorithms in the function `optim()`. The general strategy is to use the BFGS algorithm (Byrd, 1995) combined with the SANN Simulated Annealing (Belisle, 1992) for cases of difficulties with convergence. Such strategy proved satisfactory for the analysis reported here. After convergence, standard errors and confidence intervals can be obtained. Likelihood is profiled for different combinations of parameters. Profiled based likelihood intervals are in general more realistic than those based on quadratic approximations and their computations provide a check for the likelihood maximization.

2.1 Model specifications

With appropriate choices for each of the components in the generic model structure (1) it is possible to specify usual models such as the logit link Beta regression and the more recently proposed Kumaraswamy with complementary log-log link.

Four options are considered here for the responses’ distribution $d(\cdot)$: Gaussian, Beta, Simplex and Kumaraswamy (Kw), all parametrised with a location parameter μ to be related to the covariates with $E[Y_i] = \mu$, for the former three and $\text{mad}[Y_i] = \mu_i$ for the latter. The densities are:

- **Gaussian:** $d(y; \mu, \phi) = \frac{1}{\sqrt{2\pi\phi}} \exp\{-\frac{1}{2\phi^2}(y - \mu)^2\}$;
- **Beta:** $d(y; \mu, \phi) = \frac{\Gamma(\phi)}{\Gamma(\mu\phi)\Gamma((1-\mu)\phi)} y^{\mu\phi-1}(1-y)^{(1-\mu)\phi-1}$;
- **Simplex:** $d(y; \mu, \phi) = (2\pi\phi^2(y(1-y)^3))^{-1/2} \exp\left\{-\frac{1}{2\phi^2} \left\{ \frac{(y-\mu)^2}{y(1-y)\mu^2(1-\mu)^2} \right\} \right\}$;
- **Kumaraswamy (Kw):** $d(y; \mu, \phi) = \frac{\phi \ln(1-0.5)}{\ln(1-\mu)\phi} y^{\phi-1}(1-y)^{\frac{\ln(1-0.5)}{\ln(1-\mu)\phi}}$.

The Beta, Simplex and Kumaraswamy are defined for $y, \mu \in (0, 1)$, whereas for the Gaussian $y, \mu \in \mathbb{R}$, with $\phi > 0$. Even with $f(\cdot)$ mapping to the unity interval, the Gaussian does not consider the data being bounded above and below. Even though, this is a frequently choice in the literature as, for instance, models for plant disease progress.

The function $T(\cdot) (0, 1) \mapsto \mathbb{R}$ can be chosen to ensure transformed responses in the unity interval. Six options are considered here:

- **logit:** $T(y) = \ln \left(\frac{y}{1-y} \right)$;
- **probit:** $T(y) = \Phi(y)$, with $\Phi(\cdot)$ denoting the cumulative Gaussian density;
- **complementary log-log:** $T(y) = \ln(-\ln(1-y))$;
- **log-log:** $T(y) = -\ln(-\ln(y))$;
- **cauchit:** $T(y) = \tan(\pi \cdot (y - 1/2))$.

• *Aranda-Ordaz*: $T(y; \lambda) = \ln \left\{ \frac{(1-y)^{-\lambda} - 1}{\lambda} \right\}$, com $\lambda > 0$.

Even though the function $T(\cdot)$ is a function of the response Y whereas the inverse of $f(\cdot)$ is a function of μ, it is possible to adopt the same functional form since both $Y, \mu \in (0, 1)$. We therefore consider the inverse forms of the above function as the choices for $f(\cdot)$.

A total for 30 possible models are defined by combining the above choices for $d(\cdot), T(\cdot), f(\cdot)$. Six are defined by options for $T(\cdot)$ assuming the Gaussian distribution for the transformed responses and the identity link function. The remaining 24 are given by the combination of the six options for the identity $f(\cdot)$ and the four options for $d(\cdot)$. For such cases $T(\cdot)$ is the identity function. All these 30 models are fitted in the following four case studies.

3 Results

3.1 Curitiba’s interurban life quality index - IQVC

The interurban life quality index of the municipality of Curitiba (IQVC, acronym in Portuguese) results from 18 indicator, split in 5 thematic areas: housing, health, education, security and transportation. The index is built based on the UN’s human development index (IDH)\(^2\) and values are expressed within the unity interval. The higher the index, the better is considered to be the life quality on a given district. The data come from the 2000’s census microdata provided by IBGE\(^3\) (the Brazilian agency for population studies) and processed by Curitiba’s Institute for Urban Planning (IPPUC).

The objective of the analysis is to relate the IQVC mean income of the district, expressed by multiples of official minimum wage at the time. This is a simple data structure with a response on the unity interval and a continuous covariate for the 75 districts for Curitiba. Table 1 provides the log-likelihoods for the 30 models described in Section 2. Table columns correspond to the options for the link functions $f(\cdot)$ and options for $d(\cdot)$ are on table rows, except for the last which provides values for the choices of $T(\cdot)$.

Most of the proposed models have the same number of parameters and can be directly compared by the log-likelihoods. The exceptions are for the models with the Aranda-Ordaz link or transformation functions with one extra parameter. Models with logit link function are particular cases of the Aranda-Ordaz setting $\lambda = 1$. Overall, better fits are obtained choosing Kw for $d(\cdot)$ and cauchit for $f(\cdot)$. The former is better for all choices of link function whereas the latter is better fitted for all distributions for the responses. The choice of the link function has less impact on the log-likelihoods.

The transformed models are clearly worse in all cases. The probit option for $T(\cdot)$ provides the best fit among the transformed models, with likelihood values closer to the obtained for the Aranda-Ordaz and its particular case, the logit.

\(^2\)http://hdr.undp.org/en/humandev/
\(^3\)http://www.ibge.gov.br

Table 1 - Log-likelihoods for the fitted models with choices for the link (columns), distribution (rows) and transformation (last row) - IQVC.

<table>
<thead>
<tr>
<th>Distributions</th>
<th>Link or transformation function</th>
<th>Logit</th>
<th>Probit</th>
<th>Cloglog</th>
<th>Loglog</th>
<th>Cauchit</th>
<th>Aranda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta</td>
<td></td>
<td>56.84</td>
<td>56.14</td>
<td>54.18</td>
<td>57.75</td>
<td>59.34</td>
<td>58.47</td>
</tr>
<tr>
<td>Gaussian</td>
<td></td>
<td>57.19</td>
<td>56.74</td>
<td>55.40</td>
<td>57.78</td>
<td>58.71</td>
<td>58.20</td>
</tr>
<tr>
<td>Kw</td>
<td></td>
<td>60.49</td>
<td>60.04</td>
<td>58.48</td>
<td>61.36</td>
<td>62.17</td>
<td>62.16</td>
</tr>
<tr>
<td>Simplex</td>
<td></td>
<td>51.57</td>
<td>50.76</td>
<td>48.73</td>
<td>52.94</td>
<td>55.87</td>
<td>54.29</td>
</tr>
<tr>
<td>trans-Gaussian</td>
<td></td>
<td>54.79</td>
<td>54.95</td>
<td>52.95</td>
<td>53.01</td>
<td>46.68</td>
<td>54.85</td>
</tr>
</tbody>
</table>

Table 2 - Point estimates and standard errors for models with cauchit link or transformation (last column) - IQVC.

<table>
<thead>
<tr>
<th>Effects</th>
<th>Probability distribution</th>
<th>Beta</th>
<th>Gaussian</th>
<th>Kw</th>
<th>Simplex</th>
<th>trans-Gaussian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.53(0.11)</td>
<td>-0.57(0.10)</td>
<td>-0.59(0.10)</td>
<td>-0.57(0.09)</td>
<td>-0.56(0.14)</td>
<td></td>
</tr>
<tr>
<td>Income</td>
<td>7.82(0.93)</td>
<td>8.51(1.08)</td>
<td>8.67(1.15)</td>
<td>8.99(1.19)</td>
<td>8.99(1.08)</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 provides the coefficient’s point estimates and associated standard errors for the options of d(·) and with the cauchit as the link or transformation function. The income was divided by 100 for easier visualisation of the coefficients. Results shows similar values for all cases with slightly different values for the Beta distribution.

Figure 1 shows the fitted models with prediction bands superimposed on the observed data. Predicted values are visually alike for the different models. Confidence bands are close to symmetric for the transformed model, with subtle differences.

Figure 1 - Original data and predicted IQVC as functions of the income for models on Table 2.

The differences in log-likelihoods, parameter estimates, standard errors...
Table 3 - Log-likelihoods for models with different distributions and link functions and transformed models (last row) - *Food Expenditure*

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Logit</th>
<th>Probit</th>
<th>Cloglog</th>
<th>Loglog</th>
<th>Cauchit</th>
<th>Aranda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta</td>
<td>45.33</td>
<td>45.09</td>
<td>45.77</td>
<td>44.55</td>
<td>46.96</td>
<td>47.51</td>
</tr>
<tr>
<td>Gaussian</td>
<td>45.80</td>
<td>45.50</td>
<td>46.34</td>
<td>44.78</td>
<td>47.68</td>
<td>47.87</td>
</tr>
<tr>
<td>Kw</td>
<td>48.88</td>
<td>48.65</td>
<td>49.25</td>
<td>48.10</td>
<td>50.19</td>
<td>50.51</td>
</tr>
<tr>
<td>Simplex</td>
<td>45.60</td>
<td>45.43</td>
<td>45.90</td>
<td>45.04</td>
<td>46.78</td>
<td>47.40</td>
</tr>
<tr>
<td>trans-Gaussian</td>
<td>45.22</td>
<td>45.27</td>
<td>45.00</td>
<td>44.77</td>
<td>41.41</td>
<td>45.22</td>
</tr>
</tbody>
</table>

Table 4 - Point estimates and standard errors for models with *cauchit* link or transformation (last column) - *Food Expenditure*

<table>
<thead>
<tr>
<th>Effects</th>
<th>Beta</th>
<th>Gaussian</th>
<th>Kw</th>
<th>Simplex</th>
<th>trans-Gaussian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.50(0.21)</td>
<td>-0.53(0.21)</td>
<td>-0.71(0.19)</td>
<td>-0.54(0.24)</td>
<td>-0.51(0.31)</td>
</tr>
<tr>
<td>Budget</td>
<td>-14.15(3.23)</td>
<td>-14.96(3.19)</td>
<td>-10.54(2.36)</td>
<td>-12.68(3.19)</td>
<td>-12.85(4.12)</td>
</tr>
<tr>
<td>Residents</td>
<td>13.50(3.58)</td>
<td>15.17(3.48)</td>
<td>14.48(2.86)</td>
<td>12.55(3.69)</td>
<td>10.13(4.83)</td>
</tr>
</tbody>
</table>

and predicted values allow for the overall conclusion the models do not differ substantially and that the model choice has little impact, if any, on practical conclusions.

3.2 Food expenditure

This second example revisits the food expenditure data analysed by Ferrari and Cribari-Neto (2004) when introducing the Beta regression model. The data consists of a sample of 38 family economies from a US large city and is available as the *FoodExpenditure* object in the *betareg* package (Cribari-Neto & Zeileis, 2010).

Table 3 shows log-likelihood values for the 30 models with the percentage of family budget as the response variable and the total family income and number of residents as covariates. The *Kw* distribution and *cauchit* link have higher log-likelihood values and combined provide the better fit overall. Larger differences in log-likelihoods were found between the distributions for the response variable.

Table 4 provides parameter estimates and associated standard errors for the different choices for $d(\cdot)$ combined with the *logit* link function. Total income values were divided by 100 for better display of the coefficients. The model intercept is higher for the *Kw* distribution and with the smallest standard error. Coefficients associated with the covariate *number of residents* shows larger variation among the choices for $d(\cdot)$. Estimates varies from 10.13 for the transformed model, to 15.17 for the Gaussian model, a difference of 49.75%. The estimate under the *Kw* is 14.482 and a standard error of 2.857, the smallest among all the distributions.

Figure 2 shows the original data and the models for each of the 7 possible
values for the number of residents. All models have the cauchit as the choice for link or transformation function. The model with Kw distribution follows the data more closely, in particular when residents number equals 6. Confidence bands are narrower, reflecting the smaller standard error.

Figure 2 - Original data and predictions of food expenditure as function of budget and number of residents for models on Table 4.

3.3 Brazilian industry workers’ life quality index - IQVT

The Brazilian industry worker’s life quality index (IQVT, acronym in Portuguese) combines 25 indicators from eight thematic areas: housing, health, education, integral health and workplace safety, development of skills, attributed value to work, corporate social responsibility, participation and stimulus to performance. The index is constructed following premisses of the united nations...
Table 5 - Log-likelihoods for models with different distributions and link functions and transformed models (last row) - IQVT

<table>
<thead>
<tr>
<th>Distribuições</th>
<th>Link or transformation functions</th>
<th>Logit</th>
<th>Probit</th>
<th>Cloglog</th>
<th>Loglog</th>
<th>Cauchit</th>
<th>Aranda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta</td>
<td></td>
<td>567.03</td>
<td>566.87</td>
<td>566.23</td>
<td>567.39</td>
<td>567.77</td>
<td>567.68</td>
</tr>
<tr>
<td>Gaussian</td>
<td></td>
<td>564.34</td>
<td>564.20</td>
<td>563.63</td>
<td>564.65</td>
<td>564.98</td>
<td>564.88</td>
</tr>
<tr>
<td>Kw</td>
<td></td>
<td>564.81</td>
<td>564.67</td>
<td>564.06</td>
<td>565.27</td>
<td>565.71</td>
<td>565.79</td>
</tr>
<tr>
<td>Simplex</td>
<td></td>
<td>568.72</td>
<td>568.53</td>
<td>567.77</td>
<td>569.15</td>
<td>569.63</td>
<td>569.50</td>
</tr>
<tr>
<td>trans-Gaussian</td>
<td></td>
<td>568.63</td>
<td>567.64</td>
<td>561.31</td>
<td>572.28</td>
<td>573.90</td>
<td>574.54</td>
</tr>
</tbody>
</table>

human development index\(^4\). Values are expressed in the unity interval and, the closer to one, the higher the industry worker’s life quality.

A pool was conducted in the year 2010 by the Industry Social Service\(^5\) in order to assess worker’s life quality in the Brazilian industries. The survey included 365 companies from nine out of the 27 Brazilian federative units. IQVT was computed for each company from questionnaires applied to workers, following a sampling design. Companies provided additional questionnaire information on the budget for social benefits and other quality of life related initiatives.

For the current analysis, a suitable model is aimed to assess whether IQVT varies according to two company related covariates: company’s average income and federative unity - FU. The first expressing the capacity to fulfil workers basic needs such as food, health, housing and education and is simply the total of salaries divided by the number of the industry’s workers. The federative unit where the company is located is expected to be influential due to varying local legislations, taxing and further economic and local political conditions.

The data consists of a response variable expressed in the unity interval (IQVT) and two covariates, one continuous (income) and one categorical (FU) with State of Amazon as the reference level in the parametrisation.

Log-likelihood for the fitted models are presented in Table 5. Higher log-likelihoods were obtained for the log-log, cauchit and Aranda-Ordaz transformed response models. Simplex models are the best fitted among the other distributions. The complementary log-log transformation has the worse results, with the lower log-likelihood among all considered models. The log-likelihoods are more variable for this example in comparison with the previous, ranging from 561.30 to 574.54, implying the model fit is more sensitive to the choice of model. In contrast with the previous examples the choices for \(T(\cdot)\) and \(f(\cdot)\) have now impacted the choices of \(d(\cdot)\).

The Aranda-Ordaz response transformed model has the highest log-likelihood (574.54) with one extra parameter and a difference of only 0.64 in log-likelihood when compared with the response transformed cauchit model. The cauchit is the best choice among options for link or transformation function. Models with the

\(^4\)http://hdr.undp.org/en/humadev/

\(^5\)Serviço Social da Indústria - SESI

Table 6 - Point estimates and standard errors for models with cauchit link or transformation (last column) - IQVT

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>Probability distributions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beta</td>
</tr>
<tr>
<td>Intercept</td>
<td>-0.02(0.04)</td>
</tr>
<tr>
<td>Income</td>
<td>3.27(0.29)</td>
</tr>
<tr>
<td>CE</td>
<td>0.03(0.04)</td>
</tr>
<tr>
<td>DF</td>
<td>-0.24(0.04)</td>
</tr>
<tr>
<td>MT</td>
<td>-0.10(0.04)</td>
</tr>
<tr>
<td>MS</td>
<td>0.02(0.04)</td>
</tr>
<tr>
<td>PA</td>
<td>0.11(0.04)</td>
</tr>
<tr>
<td>PR</td>
<td>0.01(0.03)</td>
</tr>
<tr>
<td>RO</td>
<td>-0.20(0.05)</td>
</tr>
<tr>
<td>RR</td>
<td>-0.15(0.05)</td>
</tr>
</tbody>
</table>

Cauchit link have higher log-likelihoods for Beta, Simplex and Gaussian distribution.

Point estimates and standard errors are shown in Table 6. The effects differ in magnitude but conclusions about significance are the same for all models. The covariate income is expressed in thousand of reais, the local currency. Estimated coefficient values are similar for different models with larger differences for the Kw distribution, the only one with a positive value for the intercept and slightly smaller value for the coefficient of income. Effects of the federative units are smaller under the Kw. Less clear are the patterns of standard errors. Under the Kw estimates are \(-0.115\) for RO and around \(-0.19\) to \(-0.20\) for other federative units, a substantial difference.

Figure 3 shows original data and fitted curves for the models listed on Table 6 without noticeable differences, even with the larger differences in the log-likelihoods obtained for the considered models.

3.4 Progress of Plant disease

Alves (2012) describes a field study on the temporal progress of peach rust incidence (Tranzschelia discolor). The experimental units consist of 11 trees, each one from a different cultivar. Total numbers of leaves and number of infected leaves were recorded for six stems per plant fortnightly between November and April during two consecutive years. The number of days (dia) since the beginning of the monitoring was also recorded.

Gaussian non-linear models are widely used to fit disease progress curves. The logistic, monomolecular and Gompertz models (Spósito et al., 2004) are the most frequently adopted in the literature. The tree models can be specified under the general model format considered here choosing the link function \(f(\cdot)\) as the logit for the logistic, the cloglog for the monomolecular and log-log for the Gompertz. Such modelling strategy ignores the response variable, disease incidence or severity, is
restricted to the unity interval. The wider class considered here provides potentially more realistic and better options for modelling the disease progress ensuring the values of estimated models and confidence bands lies within the unity interval.

The 30 models were fit individually for each cultivar and the likelihood values are summarised in Figure 4. Results show the widely used Gaussian non-linear models are clearly worse than the alternatives. They assume homocedasticity which does not impact if values are within a narrow range but inappropriate otherwise, with greater impact when there are observed values close to the limits of the unity interval, which is common in practice.

Log-likelihoods do not vary substantially for the models with Beta, Kw and Simplex distributions. For these models, the choice of the link function, which determines the shape of the disease progress curve has little impact. The response transformed models are more sensitive to the choice of $T(\cdot)$ and the cauchit, proved better in the previous examples, is the worse case here.

Although having an extra parameter and expected to have better results, the Aranda-Ordaz transformation was not uniformly superior. One of the alternative link functions was always able to provide a similar fit with one less parameter.

Although superior to the naïve Gaussian model, none of the options for $d(\cdot)$ which respects the unity interval restriction was clearly better than the others. Despite not frequently adopted in the literature, the transformed response would be the model of choice for 9 out of the 11 cultivars, however with little differences in log-likelihoods to the others.
Conclusions

A general and flexible regression model specification for response variables with values on the unity interval was presented. Several models adopted in the literature can be identified as particular cases. Inference is performed under a common framework based on likelihood methods for parameter estimates, confidence intervals, prediction of curves and confidence bands. Likelihood values are used to compare 30 different model specifications. The generality of the model format and the method of inference allow for a flexible computational implementation, which can be extended to options not considered here for the mode components.

Response transformed models are the only ones with closed expressions for the parameter estimators. This case is equivalent to standard least squares for linear regression and model fitting is straightforward. This is an advantage over the alternatives which require numerical algorithms for maximization of the likelihood function with usual concerns about starting values, parametrisations and convergence. On the other hand, transformed models become less attractive if predictions are requested in the original scale for which, in general, numerical (integration or simulation) methods are required, although such methods can still be less computationally demanding in comparison with numerical maximizations.

Difference in log-likelihoods for the case studies reached up to 10 units, even for...
models with the same number of parameters. Larger differences were found among choices for the response distribution for three out of the four case studies whereas choices of link functions have impact upon the values of the log-likelihoods. The cauchit was the best option for link or transformation function for the initial three examples, however not for the last one which has responses more widely distributed over unity interval.

Effects of the covariates measured by the estimated coefficients were impacted by the choices of model for some cases, although without affecting significance. Fits of the response transformed model are comparable to the alternatives with the advantage of the easy computation with closed expressions for the parameter estimators. This places such models as an attractive option for initial and screening analysis or cases where large number and/or frequent mode fitting is to be performed.

Overall, we argue that the practice of modelling responses on the unity interval should be based on the analysis of a wide range of alternative models, instead of restricting the choice to a particular family. Our analysis and algorithms illustrate this can be accomplished in a practical manner.

Further studies, possible based on simulations, can be directed to identify specific aspects of data which may be better captured for a particular choice of model. Extensions incorporating random effects are also to be better investigated.

Acknowledgements

To IPPUC (Instituto de Pesquisa e Planejamento Urbano de Curitiba) for the Curitiba’s interurban life quality index. To Sonia Beraldi de Magalhães from the Paraná section and Milton Matos de Souza from the Departamento Nacional do Serviço Social da Indústria (SESI) for the industry workers life quality index data. To Giselda Alves and Larissa May de Mio from the peach rust data. To two anonymous referees and Silvia Emiko Shimakura for their valuable comments on the manuscript.

RESUMO: Modelos de regressão são largamente utilizados em diversas áreas de aplicação para descrever associações entre uma variável resposta e variáveis explicativas. Os modelos lineares gaussianos muito utilizados inicialmente foram gradualmente estendidos para diversos tipos de variáveis resposta. Muitas destas extensões foram posteriormente descritas como casos particulares da classe mais geral de modelos lineares generalizados (MLG) que, sob uma mesma abordagem, acomodam uma diversidade de formas para a variável resposta e funções ligando parâmetros das distribuições a um preditor linear. Desde então a estrutura dos MLG tem sido estendida em diversos desenvolvimentos subsequentes em modelagem estatística como modelos aditivos generalizados, de superdispersão, dentre outros. Variáveis respostas com valores restritos a um certo intervalo, em geral (0, 1) são comuns em ciências sociais, agronomia, psicometria dentre outras áreas. As distribuições beta e simplex são usualmente adotadas, dentre outras opções na literatura. Neste artigo modelos de regressão para respostas restritas são especificados na forma de uma classe geral que inclui as formas usuais bem como permite explorar uma maior diversidade de modelos. Casos particulares são definidos pelas escolhas de três componentes: a distribuição de probabilidades para a resposta, a função de ligação de um parâmetro da distribuição escolhida e o preditor linear a uma função de transformação da resposta. São mostrados resultados das análises de quatro diferentes conjuntos de dados considerando as distribuições beta, simplex, Kumaraswamy e gaussiana, e as funções logit, probit, complemento log-log, log-log, Cauchit e Aranda-Ordaz como opções para ligação e transformação da variável resposta. Análises baseadas na verossimilhança são conduzidas de forma unificada para ajuste, comparação e escolha de modelos e códigos são disponibilizados. Os resultados mostram que não há uma forma de modelo que se destaque ilustrando a importância de se explorar uma ampla classe de modelos a cada análise.

PALAVRAS-CHAVE: Máxima verossimilhança; variáveis restritas; proporções; índices; taxas.

References

Received in 29.01.2013.

Approved after revised in 04.04.2013.