CONTROLLING THE OSCILLATIONS OF A VARIABLE LENGTH PENDULUM

Moises DELGADO1
Arturo PORTNOY2
Jairo A. FUQUENE P.3

\textbf{ABSTRACT:} An efficient method for stopping a pendulum's planar oscillations by variations in the pendulum's length is found. This strategy is accomplished by casting the problem as an optimal control problem. The pendulum's governing equations are deduced and using these equations the oscillation energy of the pendulum is found. The problem becomes a variational problem with constraints in which a functional which represent the oscillation energy of the pendulum is to be minimized. Using Pontryagin's Principle, optimal solutions are found. Finally, the effectiveness of the found strategies is illustrated graphically; analytical and numerical comparisons are made.

\textbf{KEYWORDS:} Pendulum of variable length; oscillation energy; Pontryagin principle.

1 University of Puerto Rico, Department of Mathematics, Rio Piedras Campus, San Juan PR, USA. E-mail: moises.delgado@uprrp.edu
2 University of Puerto Rico, Department of Mathematical Sciences, Mayaguez Campus, Mayaguez PR, USA. E-mail: arturo.portnoy@upr.edu
3 University of Puerto Rico, School of Business Administration, UPR-RRP. Institute of Statistics, Business School, Rio Piedras Campus. PO Box 23332, San Juan, Puerto Rico 00931-3332, USA. E-mail: jairo.a.fuquene@uprrp.edu