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ABSTRACT: In this paper, original theoretical developments have been carried out to

estimate parameters and residual variance as functions of initial estimates, for models

of cell means of N-ways of classification with fixed effects when we have additional

information into the cells. We have proven the properties of those new estimators such

as unbiasedness and minimum variance. In the adjustment of these new parameters we

do not require knowledge of initial information. Only for upgrading must we use the

initial estimates of the parameters and the residual variance. This situation is usually

present in industrial and biological experimentation. Finally, we work on the application

of a factorial design in which we apply the obtained results.
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1 Introduction

There is a problem in studies on experimental design with unbalanced structure
data in an N-way model of classification. Some of the common mistakes that
researchers make are those related to the use of theory for a balanced design, which
means that a hypothesis system is tested with an inappropriate system, leading to
a wrong analysis of the information. Then, it is important to know what kinds of
hypotheses are testable when the problem exists and determine if they are relevant
to the study.
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To find a solution in the presence of empty cells or missing data, statisticians
have proposed several solutions, some of them are: to repeat the experiment
under the same initial conditions in order to obtain estimations for missing data,
minimizing the sum of squared errors, naming auxiliary variables or using iterative
methods of estimation and analyzing the data in its original state, which implies
making an analysis with empty cells.

Also, we can start with a balanced design, but the proper conditions of the
experiment require that additional information be considered into all combinations
of cells getting an unbalancing in the design, or at the beginning of the experiment,
it may occur that information about some points for the design are missing. Besides,
when the replications are made under similar conditions, information for those cells
can be obtained or we can have new information in cells that were originally empty.
The inclusion of this information implies the estimation of new parameter sets. As
a consequence, an appropriate analysis is required.

Unbalancing can occur given the additional information into the cells,
therefore, recent study carried out by López (1992), Iemma (1993), Mondardo
(1994), Iemma et al. (1999), López (1999), Melo et al. (1999, 2000) is useful, since it
shows the trouble that researchers find when the design has an unbalanced structure
of classification and when there are empty cells. The care that must be taken in
the identification of the true testing hypotheses such, as in the characterization of
the estimable functions when that problem occurs, is shown.

This paper has the theoretical support of linear models, mainly the cell means
model (Hocking 1996, 2002) and the modified cell means model (Murray and Smith,
1985). In the next section some basic ideas about cell means models are presented.
In the third section the developments that allow the upgrade in the estimation of
parameters such as residual variance are performed. The fourth section includes
a numeric example to illustrate the theoretical developments presented in section
three. And finally some conclusions are presented.

2 Preliminary concepts

Linear models are used for the theoretical development of a problem.
Specifically, the cell means models and modified cell mean models are presented
in the next subsections.

2.1 Cell means model

The cell means model is defined as the linear model (Speed, et al. 1978)

Y1 = W1µ1 + e1 (1)

where, Y1 is a vector of random variables with size k× 1, W1 is a block matrix with
size k × q where the i-th diagonal block corresponds to a column vector composed
1’s with size nij...s, where nij...s is the number of observations of the ij...s-th cell,

116 Rev. Mat. Estat., São Paulo, v.24, n.3, p.115-137, 2006



µ1 is a vector of means with size q× 1 and e1 is a vector of non-observable random
variables of size k × 1 such that e1 ∼ N(0, σ2

1I1).
When there are no missing cells, W1 is a full column rank; otherwise there are

missing cells, where W1 has a zero column for each missing cell and, therefore, its
rank is not full; µ1 is taken as if every cell would has been observed.

In this context the system has the following solution: µ̂1 = (W t
1W1)−W t

1Y1,
which is the same as the least square estimation for µ1. Thus, the best linear
unbiased estimator (BLUE) for µij...s is the mean of cell ij...s, this means that
BLUE (µij...s) = ȳij...s.

If the following restriction to the model (1) is imposed

Gµ1 = g (2)

Which is known as the cell means model with restriction, where G is a matrix
composed of unknown contrasts with size s× q and rank s.

2.2 The modified cell means model

If g = 0 in (2), then the cell means model is characterized by Hocking (1996,
2002), Speed, et al. (1978) as the model (1) with the restriction

Gµ1 = 0 (3)

where G was specified above and represents the known linear relationships over the
cell means. Generally it specifies contrasts of no-interaction in the cell means model
as we can see in Hocking (1996, 2002), Searle (1987) and Murray and Smith (1985).

The constraint matrix of G can be reorganized and G can be reordered and
partitioned into two submatrices, which means G = [G1|G2], where G2 is s × s of
rank s and G is s× (q−s). The partition of µ1 is independent of the data obtained;
in particular it is independent of the number of missing cells (for example f) and
their location. The partition depends on how the experiment was planned and not
how it was done. Also, it depends on G and the relations among the cell means.
Hance, the columns that compose µ1 can be reorganized in agreement with the
partitioning of G, giving

µt
1 =

(
mt

1

... mt
2

)
(4)

and hence (2) can be written as

Gµ1 = G1m1 + G2m2 = g (5)

The choice of submatrix G2 is arbitrary and when it is nonsingular, the only
solution for m2 in terms of m1 exists and is given by

m2 = G−1
2 (g −G1m1) (6)
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This partitioning is now used to rewrite the cell means model (1). The columns
of incidence matrix w must be reorganized in agreement with the reordering of G
and µ1, giving

Y1 =
(

ω1

... ω2

) (
m1

m2

)
+ e1 (7)

and substituting (6) in (7), the model (1) can be written as

Y1 − ω2G
−1
2 g = (ω1 − ω2G

−1
2 G1)m1 + e1 (8)

Making Y ∗
1 = Y1 − ω2G

−1
2 g and V = (ω1 − ω2G

−1
2 G1) of size k × (q − s), we

get the modified unconstrained model by Murray and Smith (1985)

Y ∗
1 = V m1 + e1 (9)

If the rank of V is (q−s), then V tV is non singular and we can apply the usual
method of least squares for unconstrained full rank models, obtaining the BLUE
for m1 as

m̂1 = (V tV )−1V tY ∗
1 (10)

Substituting (10) in (6) we find the BLUE for m2,

m̂2 = G−1
2 [g −G1(V tV )−1V tY ∗

1 ] (11)

If there are non empty cells, then the rank of V is (q − s). If there are empty
cells, V may still have rank (q−s), in which case (10) and (11) are the only BLUE’s
for m1 and m2. If the rank of V is less than (q−s), then we are in the same problem
as that in the overparametric model (see Searle 1971).

Based on the model (9), when we impose non-interaction restrictions, we
establish the possibility to connect empty cells with information from non-empty
cells getting the base for the estimable functions in an easy way. Due the importance
of these two concepts a synthesis of estimability and connectedness is presented in
section 2.2.1.

2.2.1 Estimability and connectedness

In this section, we relate the estimability of cell means to the concept of
connectedness to develop a simple test for estimability of µ1 based on the modified
µ1-model (9).

The term connectedness initially referred to the physical location of the filled
cells in the two-way array associated with the randomized block design (John, 1974).
In Searle (1987), the simple idea is that the design is connected, if possible, to join
cells in which we alternately step in the same row (treatment) or to the same column
(block). Thus, treatments i and r in the cells (i, j) and (r, t) may be connected by
the path.
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(i, j) → (i, v) → (u, v) → (u, t) → (r, t)

Hocking (1996, 2002) and Searle (1971, 1987) give us a definition of
connectedness for two-way classification models without interaction, as generalized
by Weeks and Williams (1964), who presented a proposal for studying connectedness
in linear models for N-way crossed classification without interaction.

Recognizing that the goal of connectedness is estimability and that this
includes both the design and model leads us to the following very general definition
for the cell means model:

Definition 1. An experiment conformed by a data set and associated with a cell
means model is connected if µ1 is linearly estimable in a unique way.

A particular data set can be connected to a model and not to another.
For example, in a model of classification with three factors, several levels of
connectedness are presented, and this depends on the necessary restriction for
getting estimability of µ1. The model without restriction requires that nijk ≥ 0.
The non interaction condition can be enough to allow the estimation of all µijk in
the case of missing cells. If this is not enough, then the imposition of one or more
restrictions of non interaction with a smaller dimension than the factors can lead
to the estimability.

The search for estimability of the parameters does not justify the supposition in
the restrictions. This assumption should be made before collecting the information,
based on a-priori information regarding the relationships among the cell means.
That is, we are interested in making the analysis as it was initially conceived and
not an analysis based on some conveniences dictated by the data.

Based on the modified cell means model and on definition 1, Murray and Smith
(1985) presented an approach for the study of connectedness, which is summarized
in the following theorem:

Theorem 1. For model (1) and (2), the experiment is connected if and only if V
has full column rank, which means that the rank of V is q − s ≤ k.
Proof. You can see a proof in Murray and Smith (1985).

If V is a full column rank, then the experiment is connected, µ1 is lineally
estimable in its entirety and the original analysis can be carried out as planned. If
V does not have full column rank, then the experiment is not connected, µ1 is not
linealy estimable and the original analysis cannot be carried out. In this case, the
cell means model (1) and (2) are not full rank.

In many situations, some of those non observed means can be estimated using
restriction (3) and the observed means. In other situations, only linear combinations
of the non observed means can be estimated.

3 Upgrade of parameters and residual variance

Some experimental designs can be balanced designs, but due to the
characteristic conditions of the experiment, additional information is included in
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some or all of the combinations of cells, bearing this last to an unbalancing in the
design.

In the same way, it may happen that at the beginning of the experiment
information that is not available in some points of the design can be completed
when those additional replications are carried out under similar conditions but at
different times.

The inclusion of this additional information in the design gives the estimate
a new set of parameters and, in consequence, the problem should be studied by
keeping in mind this additional information.

In this section, it is assumed that additional information arrives to any of the
cells, that is to say, it may happen that there is additional information in cells where
there was already information or in other cells where information was not reported
initially. As the objective of this paper is the upgrade of parameters estimation
and the residual variance, it is important to consider the following partition of the
model,




Y1

Y2

Y3


 =




W1

W2

W3


µ +




e1

e2

e3


 (12)

where



e1

e2

e3


 ∼ N







01

02

03


 ;




σ2
1I1 0 0
0 σ2

2I2 0
0 0 σ2

2I3







and Y1 of size k × 1 is a vector of random variables corresponding to the initial
information, Y2 of size t × 1 is a vector of random variables with respect to the
additional information reaching the same cells where information already existed,
Y3 of size (n−k−t)×1 is a vector of random variables with respect to the additional
information that arrives to the cells that initially did not have any information. σ2

1I1

is a matrix of size k×k containing variances and covariances of the random variables
corresponding to the initial information, σ2

2I2 of size t×t is a matrix of variances and
covariances of the variables corresponding to the additional information that arrives
to the same cells where information already existed, σ2

2I3 of size (n−k−t)×(n−k−t)
is a matrix of variances and covariances of the random variables corresponding to
the additional information that reaches cells that initially had not information, W1,
W2, W3 are matrices of blocks with the i-th diagonal block corresponding to a vector
column of 1’s of size nij...s, where nij...s is the number of observations of the ij...s-th
population for the initial information as well as for the additional information, and
µ is a vector of population means.

3.1 Upgrade of the parameters estimate with additional information

In (12) it is important to carry out the estimate of the parameters and the
residual variance. Therefore, we begin with the logarithm of the likelihood function,
that is,
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−2 ln
�
L(µ, σ2

1 , σ2
2/Y )

�
= n ln(2π) + ln

�
(σ2

1)k(σ2
2)n−k

�
+ 1

σ2
1
(Y t

1 − µtW t
1)

(Y1 − µW1) + 1
σ2
2

h
(Y t

2 − µtW t
2)(Y2 − µW2)

+(Y t
3 − µtW t

3)(Y3 − µW3)
i (13)

Giving a solution for (13) and being consistent with the proposal, we suppose
that the variance of the initial information is the same as the variance for the
additional information, so we have the normal equations.

(W t
1W1 + W t

2W2 + W t
3W3)µ = W t

1Y1 + W t
2Y2 + W t

3Y3 (14)

or equivalently, the model can be written as

E




Y1

Y2

Y3


 =




W1

W2

W3


 µ (15)

In a similar form to the developments made in section 2.2, we have

µt = (m∗t
1

... m∗t
2 ) (16)

and in this way (2) can be rewritten as

Gµ = G1m
∗
1 + G2m

∗
2 = g (17)

An only solution for m∗
2 in terms of m∗

1 exists and it is given by

m∗
2 = G−1

2 (g −G1m
∗
1) (18)

Keeping in mind (16), (17) and (18), and reordering the columns of the
incidence matrices appropriately, then (15) can be rewritten as




Y1

Y2

Y3


 =




ω1

... ω2

U1

... U2

S1

... S2




(
m∗

1

m∗
2

)
+




e1

e2

e3


 (19)

Substituting (18) for (19), we see that




Y1

Y2

Y3


 =




ω2

U2

S2


G−1

2 g +




ω1 − ω2G
−1
2 G1

U1 − U2G
−1
2 G1

S1 − S2G
−1
2 G1


m∗

1 +




e1

e2

e3


 (20)
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Making Y ∗
1 = Y1 − ω2G

−1
2 g, Y ∗

2 = Y2 − U2G
−1
2 g, Y ∗

3 = Y3 − S2G
−1
2 g, V =

ω1−ω2G
−1
2 G1, U = U1−U2G

−1
2 G1, y S = S1−S2G

−1
2 G1. Then (20) is written as




Y ∗
1

Y ∗
2

Y ∗
3


 =




V
U
S


 m∗

1 +




e1

e2

e3


 (21)

In (21), if some empty cells are connected, then some of the cells where there
is the additional information corresponding to the empty cells can be written as
linear combination of the connected cells, which means that some rows from S are
linear combination of the rows from V. In this way, if Y ∗

3 and S are partitioned in
connected and unconnected information, then from the additional information it is
obtained that

(
Y ∗

2

Y ∗
3

)
=




Y ∗
2

YC

YF


 =

(
YM

YF

)
and

(
U
S

)
=




U
C
F


 =

(
M
F

)
(22)

where YC corresponds to the vector of observations of the connected cells, YF

corresponds to the vector of observations of the non-connected cells, C is the
matrix of indexes associated with the connected cells and F is the matrix of indexes
associated to the non-connected cells.

Substituting (22) in (21) the model can be written as



Y ∗
1

YM

YF


 =




V
M
F


 m∗

1 +




e1

eM

eF


 (23)

In order to find the solution of the group of parameters m∗
1, it is necessary to

consider lemma 1, which will be used in the demonstration of theorem 2.

Lemma 1. For T =
(

T1

T2

)
with f(T2) ⊂ f(T1) (it means that the row space

of T2 is contained in the row space of T1) and rank(T ) = rank(T1), a generalized
inverse of T tT = T t

1T1 + T t
2T2 is given by

(T t
1T1 + T t

2T2)− = (T t
1T1)− − (T t

1T1)−T t
2 [I + T2(T t

1T1)−T t
2 ]−1T2(T t

1T−1 )− (24)

with (T t
1T1)(T t

1T1)−(T t
1T1) = T t

1T1.

Proof. See López and Rincón (1999).
The following theorem gives us a solution for m∗

1 in (23) and in this way,
we find a solution for the estimation of parameters µ, when we have additional
information in the cells. In the solution, we had to keep only the initial estimations
for updating the parameters.
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Theorem 2. When there is additional information in the cells of model (15) under
restriction (2), the upgrade in the estimates of the parameters is given by

µ̂ =
(

m̂∗
1

... m̂∗
2

)
(25)

Where,

m̂∗
1 = {I − (V tV + F tF )−M tR−1M}(V tV + F tF )−[(V tV )m̂1

+M tYM + F tYF ] (26)

m̂∗
2 = G−1

2 (g −G1m̂
∗
1) (27)

with,

R = IM + M(V tV + F tF )−M t (28)

Proof. Working with model (15) under restriction Gµ = g, we find equation (23)
following a similar procedure to that in section 2.2. In this way, the maximum
likelihood solution for m∗

1 in equation (23) is given by

m̂∗
1 =

(
V tV + M tM + F tF

)− (
V tY ∗

1 + M tYM + F tYF

)
(29)

According to the lemma 1, as W =




V
M
F


 with f(M) ⊂ f

(
V
F

)
and

rank(W ) = rank(V ) + rank(F ), a generalized inverse of V tV + M tM + F tF is
given by

(V tV + M tM + F tF )− = (V tV + F tF )− − (V tV + F tF )−M t[IM

+M(V tV + F tF )−M t]−1M(V tV + F tF )−
(30)

or equivalently

(V tV + M tM + F tF )− = I − (V tV + F tF )−M tR−1M(V tV + F tF )− = K (31)

With R as in (28). Substituting (31) in (29), it is obtained that

m̂∗
1 = K(V tY ∗

1 + M tYM + F tYF ) (32)

and like

V tY ∗
1 = (V tV )(V tV )−V tY ∗

1 = (V tV )m̂1 (33)

With m̂1 the solution obtained in (10) should simply be considered an inverse
generalized matrix instead of an inverse of a full rank matrix. In this way, replacing
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(33) in (32) we get (26) and substituting this result in (18), the estimator for m2 is
obtained as it was given in (27).

Finally, from (26) and (27) we have (25), completing the proof.
Explicit forms to upgrade the estimate of the parameters when additional

information arrives to the experiment are presented in the following corollaries.

Corollary 1. If in model (15), the additional information only comes from the
cells that can be connected, when imposing restriction (2), then the upgrade in the
estimate of parameters µ, in terms of initial parameter estimates is given as in (25),
where for this case

m̂∗
1 =

{
I1 − (V tV )−M t

[
IM + M(V tV )−1M t

]−1
M

}[
m̂1 + (V tV )−M tYM

]
(34)

and m̂∗
2 is like in (27).

Proof. If the additional information only comes from the cells that can be
connected when imposing the restriction (2), then in expression (23) F = 0, and
therefore (26) in theorem 2, can be expressed as

m̂∗
1 = {I − (V tV )−M t(R∗)−1M}(V tV )−

[
(V tV )m̂1 + M tYM

]
(35)

where

R∗ = IM + M(V tV )−M t (36)

Corollary 2. If model (15) is not subject to restriction (2), then the upgrade in
the parameter estimated µ in terms of the initial parameter estimates is given by

m̂∗
1 = µ̂ =

{
I1 − (W t

1W1)
−

W t
2Π−1W2

}[
m̂1 + (W t

1W1)
−

W t
2Y2

]

+(W t
3W3)

−
W t

3Y3

(37)

where

Π = I2 + W2

(
W t

1W1

)−
W t

2 (38)

Proof. The solution by the method of maximum likelihood for model (23) is given
by (26). When the model is unconstrained, then G = 0 and g = 0, therefore,
V = W1, M = W2 and F = W3. Thus (26) can be written as

m̂∗
1 =

{
I1 + (W t

1W1 + W t
3W3)

−
W t

2Π−1W2

}
(W t

1W1 + W t
3W3)

−

[(W t
1W1) m̂1 + W t

2Y2 + W t
3Y3]

(39)

with

Π = I2 + W2

(
W t

1W1 + W t
3W3

)−
W t

3 (40)
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This corresponds to the estimate of µ, since non restriction has been imposed.
Also, m̂1 = (W t

1W1)
−

W t
1Y1.

In this case, W1 and W3 are orthogonal (that is, W t
1W3 = 0). Also as W1

comes from the matrix of initial information and W3 from the matrix of additional
information that arrives to the cells where initially there was no information, then

(
W t

1W1 + W t
3W3

)− =
(
W t

1W1

)− +
(
W t

3W3

)− (41)

In addition, W2 and W3 are orthogonal too (that is, W t
2W3 = 0) because W2

comes from the matrix of additional information that arrives to the cells where
initially there was information. With these results and after replacing (41) and
carrying out the different products in the expression (39) we obtain

m̂∗
1 = µ̂ =

[
I1 − (W t

1W1)
−

W t
2Π−1W2

]
(m̂1 + (W t

1W1)
−

W t
2Y2)

+ (W t
3W3)

−
W t

3Y3

(42)

and after factoring the matrix in (42), we obtain (37), completing the proof.
Also, it can be proven that πtµ̂, with µ̂ obtained as in (25), is a BLUE, that

is, BLUE(πtµ) = πtµ̂.
The expected value of the previous linear combination is

E(πtµ̂) = πtµ (43)

and its variance and covariance matrix is given by

V
(
πtµ̂

)
= πt

(
I1

−G−1
2 G1

)
V (m̂∗

1)
(

I1

... −Gt
1(G

−1
2 )t

)
π (44)

where

V (m̂∗
1) = Kσ2 (45)

In the following section, the estimate of the residual variance is upgraded when
there is additional information in the experiment.

3.2 Upgrade the estimation of the residual variance with additional
information

Similarly to the parameter estimates, in this section, an attempt is made to
upgrade the estimate of the residual variance when there is additional information,
without necessity of having knowledge about the initial information. The results of
this estimate are summarized in theorem 3.

Theorem 3. When there is additional information in the cell means model (15)
under restriction (2), the upgrade in the estimate of the residual variance in terms
of initial estimate of the residual variance is given by

Rev. Mat. Estat., São Paulo, v.24, n.3, p.115-137, 2006 125



σ̂2 = 1
(n−r) (k − rv)σ̂2

1 + SSM1 − [(V tV )m̂1 + F tYF + M tYM ]tK
[(V tV )m̂1 + F tYF + M tYM ] + Y t

MYM + Y t
F YF

(46)

Where K is obtained as in (31), r = rV + rF , rF and rV are, respectively, the
rank of the matrices V and F ,

σ̂2
1 =

1
k − rV

Y ∗t
1 [I1 − V (V tV )−V t]Y ∗

1 (47)

and

SSM1 = Y ∗t
1 V (V tV )−V tY ∗

1 (48)

Proof. When we work with model (15) and imposing restriction Gµ = g, we obtain
the equation (23) following a procedure similar to the one of section 2.2. In this
way, the estimate of the residual variance is upgraded. In this model, the maximum
likelihood solution for σ2 is

(n− r)σ̂2 = (Y ∗t
1 Y t

MY t
F )

I −



V
M
F


 (V tV + M tM + F tF )−

(
V t M t F t

)






Y ∗
1

YM

YF


 (49)

Using lemma 1 and carrying out the respective products in (49), we obtain

(n− r)σ̂2 = (Y ∗t
1 [I1 − V KV t]Y ∗

1 + Y t
M (IM −MKM t)YM

+Y t
F (IF − FKF t)YF − 2Y ∗t

1 V KM tYM

−2Y ∗t
1 V KF tYF − Y t

MMKF tYF

(50)

Adding and subtracting Y ∗t
1 V (V t)−V tY ∗

1 in (50), the variance can be rewritten
as

(n− r)σ̂2 = (Y ∗t
1 [I1 − V (V tV )−V t]Y ∗t

1 [V (V tV )−V t + V KV t]Y ∗
1

−2Y ∗t
1 V KF tYF Y t

M (IM −MKM t)YM − Y t
MMKF tYF

+Y t
F (IF − FKF t)YF − 2Y ∗t

1 V KM tYM

(51)

Substituting (10), (33), (47) and (48) into (51), we see that

(n− r)σ̂2 = (k − rV )σ̂2
1 + SSM1 − m̂t

1(V
tV )K(V tV )m̂1 + Y t

M (IM

−MKM t)YM + Y t
F (IF + FKF t)YF − 2m̂t

1(V
tV )KF tYF

−2m̂t
1(V

tV )KM tYM − Y t
MMKF tYF

(52)

When the appropriate factoring is carried out and dividing both sides of the
equation (52) by (n− r) we have (46), which completes the proof.

In corollary 3 and 4 two expressions for variances are presented, when
additional information comes to cells that can be connected and when no restriction
is imposed in the experiment.
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Corollary 3. If in model (15), the additional information reaches to the connected
cells under restriction (2), then the upgrade in the estimate of residual variance σ2

in terms of the initial estimate of residual variance σ2
1 is given by

σ̂2 =
1

n− r

{
(k − rV )σ̂2

1 + (YM −Mm̂1)t(R∗)−1(YM −Mm̂1)
}

(53)

where; σ̂2
1 and R∗ are such as in (49) and (36), respectively, and r = rV .

Proof. If the additional information only reaches to the cells that can be connected
under restriction (2), then in expression (23) F = 0 and YF = 0; therefore, (46) in
theorem 3 can be expressed as

σ̂2 =
1

n− r

{
(k − rV )σ̂2

1 + SSM1 − [(V tV )m̂1 + M tYM ]t K1

[(V tV )m̂1 + M tYM ] + Y t
MYM

} (54)

where K1 =
[
I − (V tV )−M t(R∗)−1M

]
(V tV )− and R∗ is the same as in (36).

Using (54) and carrying out the respective products, we come to

(n− r)σ̂2 = (k − rV )σ̂2
1 + SSM1 − m̂t

1(V
tV )K1(V tV )m̂1 + Y t

M[
IM −MK1M

t
]
YM − 2m̂t

1(V
tV )K1M

tYM (55)

Substituting the value of K1, applying properties of generalized inverse and
carrying out the respective products into (55), we obtain that

(n− r)σ̂2 = (k − rV )σ̂2
1 + SSM1 − m̂t

1(V
tV )m̂1 + m̂t

1M
t(R∗)−1Mm̂1

+Y t
MYM − [

Y t
MM(V tV )−M t(R∗)−1 + 2m̂t

1M
t(R∗)−1

]
[
R∗ −M(V tV )−M t

]
YM (56)

As SSM1 = m̂t
1(V

tV )m̂1 and substituting (36) into (56), we see that

(n− r)σ̂2 = (k − rV )σ̂2
1 + (Mm̂1)t(R∗)−1(Mm̂1)− 2(Mm̂1)t(R∗)−1YM

+Y t
M (R∗)−1YM (57)

The proof is completed carrying out the factoring correspondents and dividing
both sides of the equation (57) by (n− r). In this way, we come to (53).

Corollary 4. If model (15) is unconstrained, then the upgrade in the estimate of
residual variance σ2 in terms of the initial residual variance estimate, σ2

1 , is given
by
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σ̂2 =
1

n− r

{
(k − rV )σ̂2

1 + (Y2 −W2m̂1)tΠ−1(Y2 −W2m̂1) + Y t
3

[I3 −W3(W t
3W3)−W t

3 ] Y3

} (58)

where σ̂2
1 is such as (47), but replacing V by W1, Π is given by (40) and r =

rW1 + rW3 .

Proof . If model (15) is unconstrained, then G = 0 and g = 0, with this be satisfied
that V = W1, M = W2 and F = W3. In this way, the solution of maximum
likelihood for σ2 presented in equation (46) can be written as

σ̂2 =
1

n− r

{
(k − rW1)σ̂

2
1 + SSM1 −

[(
W t

1W1

)
m̂1 + W t

3Y3 + W t
2Y2

]t
K2

[(
W t

1W1

)
m̂1 + W t

3Y3 + W t
2Y2

]
+ Y t

2 Y2 + Y t
3 Y3 (59)

where K2 is obtained by replacing (38) into (31), this is

K2 =
(
W t

1W1

)− +
(
W t

3W3

)− − (
W t

1W1

)−
W t

2Π−1W2

(
W t

1W1

)−

and Π such as (38). Solving the respective products in (59)), we obtain

(n− r)σ̂2 = (k − rW1) σ̂2
1 + SSM1 − m̂t

1

(
W t

1W1

)
K2

(
W t

1W1

)
m̂1 + Y t

2[
I2 −W2K2W

t
2

]
Y2 + Y t

3

[
I3 −W3K2W

t
3

]
Y3 − 2m̂t

1

(
W t

1W1

)

K2

(
W t

2Y2 + W t
3Y3

)− 2Y t
2 W2K2W

t
3Y3 (60)

As W3 is orthogonal to W1 and W2 given the justification of corollary 2,
applying properties of generalized inverse and carrying out the respective products
in (60), we come to

(n− r)σ̂2 = (k − rW1) σ̂2
1 + SSM1 − m̂t

1

(
W t

1W1

)
m̂1 + m̂t

1W
t
2Π−1W2m̂1

+Y t
2 W2

(
W t

1W1

)−
W t

2Π−1W2

(
W t

1W1

)−
W t

2Y2 + Y t
3 [I3 −W3(

W t
3W3

)−
W t

3 ]Y3 − 2m̂t
1W

t
2Y2 + 2m̂t

1W
t
2Π−1W2

(
W t

1W1

)−

W t
2Y2 + Y t

2 [I2 −W2

(
W t

1W1

)−
W t

2 ]Y2 (61)

Replacing SSM1 = m̂t
1 (W t

1W1) m̂1 and factoring (61), it is found that

(n− r)σ̂2 = (k − rW1) σ̂2
1 + m̂t

1W
t
2Π−1W2m̂1 + Y t

2 Y2 + Y t
3 [I3 −W3(

W t
3W3

)−
W t

3 ]Y3 − [Y t
2 W2

(
W t

1W1

)− + 2m̂t
1]W

t
2Π−1

[Π−W2

(
W t

1W1

)−
W t

2 ]Y2 (62)
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Substituting (38) into (62) and factoring, we obtain

(n− r)σ̂2 = (k − rW1) σ̂2
1 + (W2m̂1)

t Π−1 (W2m̂1)− 2 (W2m̂1)
t Π−1Y2

+Y t
2 Π−1Y2 + Y t

3

[
I3 −W3

(
W t

3W3

)−
W t

3

]
Y3 (63)

Dividing both sides by (n − r) into (63) and carrying out the appropriate
factors, we finally come to (58), which completes the proof.

Finally, it can be proven that estimator σ̂2 (obtained as in theorem 3) is a
BLUE.

In this case, we find that

E(σ̂2) = σ2 (64)

and the variance of the variance estimator is

V
(
σ̂2

)
=

2σ2

n− r
; n > r (65)

4 Application

The theoretical results presented in the previous sections are illustrated in
the following asymmetric factorial arrangement 2x3x4. The data groups were taken
from Myers and Montgomery (1995). In the experiment, concerning the factors that
influence the terminal surface of a metallic particle, these factors were: corrosion
rate (inch/min) (A), court depth (inches) (B) and material type (C).

We assume that the structure of the data with initial information in the
experiment is presented in Table 1. Studies in the area had outlined, prior to
the development our study, that the interaction between the three involved factors
is not possible.

Table 1 - Initial arrangement of information in the factorial design 2x3x4

Material I Material II
Corrosion Cut depth Cut depth

rate 0.15 0.20 0.30 0.40 0.15 0.20 0.30 0.40
0.20 74 79 63 77 101

78 68 79
0.25 98 98 105 85 83

91 102 81 87
0.30 115 133 100 118

138 122
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The model associated with the factorial design without interaction of third
order is given by

yijkl = µijk + eijkl (66)

with i = 1, 2, j = 1, 2, 3, k = 1, 2, 3, 4 y l = 1, 2, . . . , nijk and where yijkl is the
l-th observation related to the i-th material, j-th corrosion rate and k-th cut depth;
µijk is the ijk-th cell mean and eijkl is the random error component such that
eijkl ∼ N(0, σ2).

For model (66), the restrictions of non interaction between factors ABC, are
given by

{µijk − µij′k − µijk′ + µij′k′} − {µi′jk − µi′j′k − µi′jk′ + µi′j′k′} = 0; (67)

for all i, j and k, with i 6= i′, j 6= j′, k 6= k′.
Of the abc possible contrasts in (67), there are only (a−1)(b−1)(c−1) contrasts

linearly independent for interaction ABC. Such a group of linearly independents
restrictions is obtained by fixing i′ = a = 2, j′ = b = 3 y k′ = c = 4, in this way,

µ1jk − µ13k − µ1j4 + µ134 − µ2jk − µ23k − µ2j4 + µ234 = 0 (68)

with j = 1, 2 and k = 1, 2, 3. Matrix G for contrasts (68) is then

Gµ1 = (D2 ⊗D3 ⊗D4)µ1 = 0 (69)

where D2 =
(

1 −1
)
, D3 =

(
1 0 −1
0 1 −1

)
and D4 =




1 0 0 −1
0 1 0 −1
0 0 1 −1


.

Therefore, matrix G is 6× 24 of rank 6. Carrying out a partition of matrix G
into two submatrices G2 of 6 × 6 and G1 of 6 × 18, where G2 is non singular and
its columns correspond to cell means [111, 112, 113, 121, 122, 123]. The columns
of G1 correspond to the remain cell means, which are [114, 124, 131, 132, 133, 134,
211, 212, 213, 214,221, 222, 223, 224, 231, 232, 233, 234].

Similarly, the rows of µ1 and the columns of W1 are reordered according to
the partition of G.

In this case, matrix V does not have full rank (rV = 14). Then considering
the restriction of non interaction of second order among three factors (ABC), the
previous factorial arrangement is not connected. To connect the arrangement, it
becomes necessary to impose another restriction to the design, for example some
restriction of non double interaction. However, for effects of the study any additional
restriction was not imposed. In consequence, we developed an analysis with this
information and the restrictions given by (68).

The vectors of parameters m1 and m2 are estimated from expressions (10)
and (11) respectively, using a generalized inverse due to the form of matrix V ; the
results for these estimates are
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m̂1 = (120.5 103.5 106.5 115 − 75 135.5 65.5 − 40 78 101 0 83 85 0 100 0 0 120)t

and

m̂2 = (76 79 7 94.5 286 98)t

and the initial variance residual is estimated from the expression (47) as follows

σ̂2
1 =

1
23− 14

Y t
1 [I23 − V (V tV )−V t]Y1 = 9.8

In Table 2, the analysis of variance for the test of hypothesis H0 : V m1 = 0
with the initial information is presented. This hypotheses is emphatically rejected
with any reasonable probability of Type-I error based on the small p− value.

Table 2 - Analysis of variance for hypothesis H0 : V m1 = 0 with the initial
information

Source DF SS MS F p− value
Treatments 13 8925.65 686.59 70.20 <0.0001

Material 1 872.98 872.98 89.28 <0.0001
Corrosion 2 6269.05 3134.52 320.58 <0.0001
Material*Corrosion 2 304.28 152.14 15.56 0.0012
Cut 3 1182.85 394.28 40.32 <0.0001
Material*Cut 3 163.84 54.61 5.59 0.0193
Cut*Corrosion 2 132.65 66.32 6.78 0.0160

Error 9 88.00 9.78
C-Total 22 9013.65

In order to know what estimable function are testable in the analysis of
variance of Table 2, we will employ the following expression

(V t
2 E1V2)(V t

2 E1W1)µ1 (70)

with E1 = I1−V1(V t
1 V1)−V t

1 and where matrices V1 and V2 are given in the modified
cell means model (9) with the appropriate restriction in (3). Specifically, these
matrices are obtained through the sequential fit of models. In this way, matrix V2

contains the effect of interest and effects that preceded it, which are in V1.
For example, the estimable functions for the Cut Depth are given in Table 3,

these hypotheses are not easy to interpret. By repeating the same process over the
other effects involved in the experiment, the rest of estimable functions can be built
(see Melo, 2001).
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Table 3 - Type-I estimable functions for the Cut Depth with initial information

Means Row 1 Row 2 Row 3
µ111 0.12 -0.27 -0.04
µ112 -0.12 0.27 0.04
µ121 0.36 0.13 0.05
µ123 0.02 0.15 0.32
µ124 -0.38 -0.27 -0.38
µ132 0.13 0.40 0.19
µ134 -0.13 -0.40 -0.19
µ211 0.27 0.01 -0.15
µ213 -0.04 0.18 0.44
µ214 -0.24 -0.19 -0.29
µ222 -0.02 0.32 -0.23
µ223 0.02 -0.32 0.23
µ231 0.25 0.13 0.14
µ234 -0.25 -0.13 -0.14

In general, Type-I estimable functions and their sums of squares depend on
the order in which the effects are added in the model. According to Table 2 all
the effects are significant, but researchers should be careful with hypotheses testing
through the different sums of square because not all hypotheses are testable.

4.1 Illustration of the method for the upgrade in the estimates when
information is added to the experiment.

We suppose now that additional information arrived to the group of data with
initial information presented in Table 1. It is presented in Table 4.

Table 4 - Additional information in the factorial design 2x3x4

Material I Material II
Corrosion Cut depth Cut depth

rate 0.15 0.20 0.30 0.40 0.15 0.20 0.30 0.40
0.20 82 102 103

0.25 105 74

0.30 114 111
108 107

In this case, as in model (21) some empty cells are connected, then some cells,
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which have additional information corresponding to the empty cells, can be written
as linear combination of the connected cells with the initial information. For that,
keeping in mind theorem 2 and equations (26) and (27), we have the following
estimates for m∗

1 and m∗
2,

m̂∗
1 = (105 103.5 112.5 115 120.5 134 67 − 26.5 78 100.5 74 83 85 86 97 0 109 121.5)t

and

m̂∗
2 = (74.5 80.5 81.5 94.5 203 101.5)t

As we observe above, the non-connected cell means produced negative
parameter estimations.

The upgraded residual variance with the additional information is obtained
from theorem 3 by means of expression (46) as follows

σ̂2 =
1

32− 17
(88 + 214605− 307171 + 53018 + 39650) = 12.67

In Table 5, the analysis of variance for the test of the hypothesis H0 : V m∗
1 =

0,Mm∗
1 = 0, Fm∗

1 = 0 with all information (initial and additional information) is
presented. This hypothesis is emphatically rejected with any reasonable probability
of Type-I error based on the small p−value. This result is similar to the one obtained
above.

Table 5 - Upgrade of analysis of variance for hypothesis H0 : V m∗
1 = 0,Mm∗

1 =
0, Fm∗

1 = 0 with the additional information

Source DF SS MS F p− value
Treatments 16 10528.46 658.03 51.95 <0.0001

Material 1 830.28 830.28 65.55 <0.0001
Corrosion 2 6398.90 3199.28 252.59 <0.0001
Material*Corrosion 2 379.22 189.61 14.97 0.0003
Cut 3 2507.62 835.87 65.99 <0.0001
Material*Cut 3 159.17 53.06 4.19 0.0243
Cut*Corrosion 5 253.28 50.66 4.00 0.0166

Error 15 190.00 12.67
C-Total 31 10718.46

To know what estimable functions are testing in the analysis of variance in
Table 5, we will employ the following expression
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(

V t
2 M t

2 F t
2

)
E2




V2

M2

F2






−

(
V t

2 M t
2 F t

2

)
E2




W1

W2

W3


 µ

with

E2 =




I1 0 0
0 IM 0
0 0 IF


−




V1

M1

F1


 (V t

1 V1 + M t
1M1 + F t

1F1)−
(

V t
1 M t

1 F t
1

)

and where matrices V1, V2, M1, M2, F1 and F2 were given in the modified cell means
model (21) with the appropriate restriction in (17). These matrices are obtained as
in (70). As above, by repeating the same process over the other effects involved in
the experiment, the rest of estimable functions can be built.

For example, the estimable functions with additional information for the Cut
Depth are given in the Table 6.

Table 6 - Type-I estimable functions for the Cut Depth with additional information

Means Row 1 Row 2 Row 3
µ111 0.15 -0.16 0.04
µ112 -0.01 0.38 0.06
µ114 -0.14 -0.22 -0.10
µ121 0.22 0.10 -0.02
µ123 0.01 0.07 0.28
µ124 -0.22 -0.17 -0.25
µ131 0.21 0.00 0.09
µ132 0.02 0.27 0.05
µ134 -0.23 -0.28 -0.14
µ211 0.22 0.10 -0.02
µ213 0.01 0.07 0.28
µ214 -0.22 -0.17 -0.25
µ221 0.07 -0.10 -0.06
µ222 -0.01 0.34 -0.11
µ223 -0.06 -0.24 0.17
µ231 0.13 0.06 -0.01
µ232 0.05 0.09 -0.27
µ234 -0.18 -0.15 -0.26

We can see that the estimable functions for this effect are not the same as those
found with initial information (see Table 3). Therefore, the hypotheses testable and
their associated sums of square are testing combinations of different effects. In this
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way, although according to Table 5 all the effects are significant, this analysis is not
similar to the analysis with initial information because another set of hypotheses is
testing here.

Additionally, in the presence of some significant interactions, as in this case,
these hypotheses may not be of general interest and more specialized hypotheses
might be considered. However, hypotheses which depend on particular cell
frequencies seem to be very difficult to justify.

Conclusions

This article carried out theoretical developments that lead to the estimation of
parameters and the computation of the residual variance as a function of the initial
estimations for cell means models for N-ways of classification with fixed effects,
when additional information is available for the cells. Some properties of those new
estimators, such as unbiasedness and minimum variance were proven.

Acknowledgement by researchers about the prior restrictions in an
experimental design where there are unbalanced and empty cells can lead to
estimability through the connectedness of estimable functions studied. Otherwise, if
we do not know those restrictions, the analysis of the information can be made with
the methodology presented for experiments with or without additional information.
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RESUMO: Neste trabalho, novos desenvolvimentos teóricos foram feitos para a

estimação de parâmetros e ajuste da variância residual, em função de estimações iniciais

nos modelos de médias de caselas de efeitos fixos, a N-vias de classificação quando se

tem informação adicional nas caselas. Também foram provadas as propriedades dos

estimadores, como dos estimadores serem não-viciados e com variância minima. No

ajuste dos novos parâmetros não foi necessário o conhecimento da informação inicial para

obter as novas estimações. Este problema pode-se apressentar em pesquisas da industria,

da biologia, da agricultura entre outras. Finalmente, apresenta-se uma aplicação com

delineamentos factoriais.

PALAVRAS-CHAVE: Delineamentos desbalanceados; modelos de médias de caselas;

informação adicional; conectores.
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SPEED, F. M.; HOCKING, R. R.; HACKNEY, O. P. Methods of analysis of linear
models with unbalanced data. J. Am. Stat. Assoc.. New York, v.73, p.105-112, 1978.

SEARLE, S. R. Linear models. New York: John Wiley & Sons, 1971. 532p.

SEARLE, S. R. Linear models for unbalanced data. New York: John Wiley & Sons,
1987. 533p.

136 Rev. Mat. Estat., São Paulo, v.24, n.3, p.115-137, 2006



WEEKS, D. L.; WILLIAMS, D. R. A Note on the determination of connectedness
in an N-Way cross classification. Technometrics. Washington, v.6, n.3, p.319-324,
1964.

ZYSKIND, G. Teoŕıa de las hipótesis lineales. Colegio de Postgraduados. Chapingo:
Escuela Nacional de Agricultura-Centro de Estad́ıstica y Calculo, 1980. 210p.

Recebido em 20.04.2006.

Aprovado após revisão em 28.09.2006.

Rev. Mat. Estat., São Paulo, v.24, n.3, p.115-137, 2006 137


