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��ABSTRACT: The advantages of using spatial analysis in annual crop experiments are well 
documented. There is much less evidence for perennial crops. For the sequence of measurements 
in perennial crops, apparently, there are no published articles in spatial analysis to date. This 
paper aimed at the comparison of several models, including auto-regressive, ante-dependence 
and character process models, in modelling sequences of measurements in perennial plants. The 
use of smoothed models, including splines, to give parsimonious response models, was also 
investigated. To access model performance, residual maximum likelihood ratio tests (LRT) and 
Akaike Criterion Information (AIC), were used. We analysed a total of 22,320 observations from 
2 trials of tea plant concerning 5 yield annual measures through different spatial and non-spatial 
models. The classes of methods used were: (1) univariate spatial models for individual annual 
measures on each trial; (2) longitudinal non-spatial models for the several measures on each 
trial; (3) longitudinal and spatial models simultaneously for repeated measures in each trial. The 
main results obtained were: for individual analysis, the best model out of 19 was the row-column 
analysis + a first-order spatial auto-regressive (AR1 x AR1) correlated error + independent term 
error, which provided efficiency (ratio between adjusted heritabilities associated with spatial and 
non spatial models) between 1.09 and 1.76 over block analysis, i.e., between 9% and 76% of 
improvement; the same model, however, with a second-order spatial auto-regressive (AR2 x 
AR2) correlated error, was not superior to (AR1 x AR1); the traits (sequence measurements in 
consecutive years) gave approximately the same behaviour in terms of results across models; the 
repeatability and the full unconstrained models were not adequate for the sequences of measures, 
which exhibited considerable variance heterogeneity between traits and high correlation between 
measures, revealing a need for new modelling. In general, the best approaches involved the 
modelling of treatment effects by ante-dependence (SAD) or auto-regressive models with 
heterogeneous variance (ARH). When the spatial effects are important, a combination of first 
order spatial auto-regressive approach for modelling errors and a multivariate (including 
simpler options such as SAD and ARH) approach for modelling treatments effects should be 
used.  
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1 Introduction 

Traditional analysis of agricultural field trials considers measures taken from 
adjacent plants or plots as non-correlated and the spatial positions of the observations are 
ignored. Hence, the residual covariance matrix is modelled as a diagonal one, with errors 
assumed as independent. However, spatial dependence does exist and contributes to the 
increase of residual variance in such a way that it is relevant to consider it in the analysis 
of trials by approaching the correlated error structure through adequate models. 

According to Fisher (1925) and Steel and Torrie (1980), randomisation of treatment 
plots across replications can provide neutralisation of the effects of spatial correlation, 
leading to a valid analysis of variance. However, the randomisation theory emphasises 
this kind of neutralisation, which is more efficient when spatial models are used. Besides, 
local control schemes relying on blocking can be inefficient in accounting all 
environmental gradients and trends and, additionally, incomplete blocks do not provide a 
complete evaluation of environmental effects. Once blocking is made before the 
establishment of the trials, the presence of patchy and environmental gradients within 
blocks is frequently observed (mainly in perennial crops) on the occasion of data 
collection. This reveals that blocks were not adequately designed a priori. In such 
situation, only spatial analysis techniques can circumvent estimation problems and 
provide efficient analysis.   

The main procedures aimed at the control and account of spatial correlation among 
neighbouring observations are time series models (Gleeson and Cullis, 1987; Martin, 
1990; Cullis and Gleeson, 1991; Gilmour et al., 1997; Gilmour et al., 1998; Cullis et al. 
1998; Smith et al., 2001) using ARIMA models and REML estimates of variance 
components (Cooper and Thompson, 1977) and geostatistical models (Grondona and 
Cressie, 1991; Zimmerman and Harville, 1991; Cressie, 1993; Banerjee et al., 2003). 

Time series models were first used by Gleeson and Cullis (1987) who considered the 
errors through an autoregressive integrated moving average process (ARIMA (p, q, d)) in 
one direction. This model was considered inefficient in some situations and Martin (1990) 
and Cullis and Gleeson (1991) extended such model to two directions: rows and columns. 
The extended model is of the form ARIMA (p1, d1, q1) x ARIMA (p2, d2, q2). This class of 
models is called error in variables and account for a tendency effect (ξ) plus an 
independent error η.  

In annual crops experiments and the absence of knowledge concerning the correct 
correlation structure, Gilmour et al., (1997) suggested the modelling of ξ as a first order 
separable autoregressive process (AR1 x AR1). This auto-regressive process in two 
directions has shown efficiency in a range of situations (Grondona et al., 1996; Gilmour et 
al., 1997; Cullis et al., 1998; Apiolaza et al., 2000; Gilmour, 2000; Qiao et al., 2000; 
Smith et al., 2001; Stringer and Cullis, 2002). A process (AR1 x AR1) is flexible and 
permits to model local and global tendencies as well as extraneous variations, taking into 
account the three major sources of spatial variation, according to Gilmour et al. (1997). 
The ARIMA methods of Gleeson and Cullis (1987), Martin (1990) and Cullis and 
Gleeson (1991) encompass the nearest-neighbour (NN) methods of Papadakis (1937), the 
Papadakis’ iterated NN method (Papadakis, 1970; Bartlett, 1978) and other previous 
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methods (Papadakis, 1984; Bartelett, 1938; Atkinson, 1969; Wilkinson et al., 1983; Green 
et al., 1985; Besag and Kempton, 1986; Williams, 1986) of neighbour analysis.  

The geo-statistical procedures directly consider spatial heterogeneity through the 
inclusion of the tendency effects and error correlation in modelling the residual 
covariance matrix. According to Gleeson (1997), the geostatistical approach of 
Zimmerman and Harville (1991), called random field linear model, is equivalent to fitting 
separable ARIMA processes and according to Gilmour et al. (1995) it is equivalent to a 
first-order separable autoregressive process (AR1 x AR1) without the independent error. 
However, geostatistical models are often isotropic and Cullis and Gleeson (1991) and 
Gilmour et al. (1997) have shown that anisotropic models are often preferred for 
modelling the variance structure in field trials. Furthermore, the assumption of 
separability results in significant savings in computer time. Based on these facts, the 
ARIMA time series models are preferred as they encompass all the other main 
approaches.  

The reports attesting the efficiency of spatial analysis refer to annual crops or forest 
trees with a single measure per plant. Spatial analysis concerning repeated measure data 
or multivariate data on each plant has not been accounted yet, despite the great number of 
crops that generate a large number of this sort of data. Perennial plants are of extreme 
importance in several tropical and subtropical parts of the world. The application of 
spatial analysis in these categories of plants involves modelling of the several random 
effects through different structures for each one, providing an adequate account of the 
repeated measures together with the spatial variation.  

In modelling longitudinal or repeated measures data arising from perennial 
individuals, several approaches can be used such as repeatability, multivariate, random 
regression, spline, character process and ante-dependence models. The simplest 
(repeatability) and the more complete and parameterised (multivariate or full 
unconstrained) models are not likely to be useful in practice. Parsimonious approaches 
such as random regression or covariance functions (Kirkpatrick et al., 1994), smoothing 
cubic splines (White et al., 1999; Verbyla et al., 1999), character process and structured 
ante-dependence models (Nunez-Anton and Zimmermann, 2000) should be tried for the 
sake of practical efficiency. Character process and structured ante-dependence models 
have proven efficiency in a number of situations (Jaffrezic et al., 2002). 

We analysed a total of 22,320 observations from 2 trials of tea plant concerning 5 
yield annual measure, through different spatial and non-spatial models. The classes of 
methods applied were: (1) univariate spatial models for individual annual measures on 
each trial; (2) longitudinal non-spatial models for the several measures on each trial; (3) 
longitudinal and spatial models simultaneously for repeated measures in each trial. These 
situations are mandatory in any breeding program of a perennial crop and all data should 
be analysed simultaneously for the sake of maximum efficiency in the improvement 
program. Adequate modelling and computing are critical for obtaining reliable estimates 
and satisfactory practical results. 

In section 2 of this paper we outline the statistical methodology emphasising general 
linear mixed modelling and REML estimation, the longitudinal and spatial models for 
repeated measured traits and model comparisons. In section 3, we present, discuss and 
compare the results of the several models applied to the data sets. In section 4, we present 
the final conclusions of the study.   
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2 Methodology 

2.1 General linear mixed model and REML estimation 

A general linear mixed model (GLMM) has the form (Henderson, 1984; Searle et al. 
1992; Thompson et al., 2003): 

ετβ ++= ZXy , (1) 

with the following distributions and structures of means and variances: 
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where: 
y :known vector of observations. 
β :parametric vector of fixed effects, with incidence matrix X. 
τ :parametric vector of random effects, with incidence matrix Z. 
ε :unknown vector of errors. 
G :variance-covariance matrix of random effects. 
R :variance-covariance matrix of errors. 
0 :null vector. 

Assuming G and R as known, the simultaneous estimation of fixed effects and the 
prediction of random effects can be obtained through the mixed model equations given 
by: 
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When G and R are not known, the variance components associated can be estimated 
efficiently through the REML procedure (Patterson & Thompson, 1971). Except for a 
constant, the residual likelihood function (in terms of its log) to be maximised is given by: 
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where: 

11111 ')'(;' −−−−− −=+= VXXVXXVVPZGZRV ,  

v = N-r(x): degrees of freedom, where N is the total number of data and r(x) is the rank of 
matrix X. 

C* : Coefficient matrix of the mixed model equations. 
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Being general, the model (1) encompasses several models inherent to different 
situations such as:  

Univariate model  

22; ετ σσ IRAG ==   

 where: 
2
τσ  : variance of random effects in τ. 

A : known matrix of relationships between the τ elements. 
2
εσ  : residual variance. 

Repeated measures model including permanent effects (p) 
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2
ρσ : variance of permanent effects. 

Multivariate models  

In the bivariate case: 
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12τσ : random treatment effects of covariance between variables 1 and 2. 

12εσ : residual covariance between variables 1 and 2. 

Spatial models (time series or geostatistical)  

R = Σ: non-diagonal matrix that considers the correlation between residuals through 
ARIMA models or covariance based on adjusted semivariance. 

2.2 Univariate spatial models for individual annual Measures on each trial 

In the context of the agricultural experiments, the general spatial model developed 
by Martin (1990) and Cullis and Gleeson (1991) has the following form: 
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y = Xβ + Zτ + ξ + η,  where:  

Y : known vector of data ordered as columns and rows within columns; 
τ : unknown vector of treatment effects; 
β : unknown vector representing spatial variation at large scale or global tendency (block 

effects, polynomial tendency); 
ξ : unknown vector representing spatial variation at small scale (within blocks) or local 

tendency, modelled as a random vector with zero mean and spatially dependent 
variance; 

η : unknown vector of independent and identically distributed errors.  
 
This model is dependent on normality. Through ARIMA models, error is modelled 

as a function of a tendency effect (ξ) plus a non correlated random residual (η). So, the 
vector of errors is partitioned into ε = ξ + η, where ξ and η refer to the spatially 
correlated and independent errors, respectively. The traditional models of analysis do not 
include the ξ component. 

Considering an experiment with rectangular shape in a grid of c columns and r rows, 
the residuals can be arranged in a matrix in a way that they can be considered to be 
correlated within columns and rows. Writing these residuals in a vector following the field 
order (by putting each column beneath another), the variance of residuals is given by 
Var(ε) = Var (ξ + η)= R = Σ =

22 )]()([ ηξ σσ �� +Φ⊗Φ
r

r
c

c I  , where 2
ξσ  is the variance due to 

local tendency and 2
ησ  is the variance of the independent residuals. 

Matrices �� ΦΦ
r

r
c

c and )()( refer to first-order autoregressive correlation matrices with 

auto-correlation parameters cΦ  and rΦ  and order equal to the number of columns and 

rows, respectively. In this case, ξ is modelled as a separable first order auto-regressive 
process (AR1 x AR1) with covariance matrix �� Φ⊗Φ=

r
r

c
cVar )]()([)( 2

ξσξ  (Gilmour et al.,1997).  

Using trials established in complete block designs the following models were fitted. 

Model 1 : Model 1: Complete block design, block as fixed effects.  

Model 2 : Model 2: Complete block design, block as fixed effects + (AR1 x AR1) 
without inclusion of the independent term error. 

Model 3 : Model 3: Complete block design, block as random effects.  

Model 4 : Model 4: Complete block design, block as random effects + (AR1 x AR1) 
without inclusion of the independent term error. 

Model 5 : Model 5: Complete block design, block as fixed effects + (AR2 x AR2) 
without inclusion of the independent term error. 

Model 6 : Model 6: Complete block design, block as fixed effects + (AR2 x AR2) 
without inclusion of the independent term error + inclusion of rows and 
columns as random effects. 
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Model 7 : Model 7: Complete block design, block as fixed effects + (AR1 x AR1) with 
inclusion of the independent term error. 

Model 8 : Model 8: Complete block design, block as fixed effects + (AR2 x AR2) with 
inclusion of the independent term error. 

Model 9 : Model 9: Complete block design, block as fixed effects + row and column as 
random effects (treatment and block are not orthogonal to row and column). 

Model 10 : Model 10: Complete block design, block as fixed effects + row and column as 
random effects + (AR1 x AR1) with inclusion of the independent term error 
(treatment and block are not orthogonal to row and column). 

Model 11 : Model 11: Row and column as random effects, not considering block and 
spatial structure. 

Model 12 : Model 12: Row and column as random effects (not considering block) + (AR1 
x AR1) with inclusion of the independent term error. 

Model 13 : Model 13: Row as fixed and column as random effects, not considering block 
and spatial structure. 

Model 14 : Model 14: Row as fixed and column as random effects (not considering 
block) + (AR1 x AR1) with inclusion of the independent term error. 

Model 15 : Model 15: Row and column as fixed effects, not considering block and spatial 
structure. 

Model 16 : Model 16: Linear trend across rows and columns, not considering block and 
spatial structure. 

Model 17 : Model 17: Linear trend across rows and columns, considering block but not 
the spatial structure. 

Model 18 : Model 18: Spatial structure (AR1 x AR1) with inclusion of the independent 
term error (equivalent to model 7 but without adjusting the block effect). 

Model 19 : Model 19: Row and column as fixed effects, not considering block but 
considering the spatial structure (AR1 x AR1). 

 Other models including splines were also evaluated. 

2.3 Longitudinal non-spatial models for several measures on each trial 

Data analyses of repeated measures were approached by several models, including 
repeatability, multivariate, character process, ante-dependence, random regression and 
cubic spline models. 

Character process models 

Pletcher and Geyer (1999) suggested the use of character process models for the 
analysis of repeated measures. These models are based on the theory of stochastic process 
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and were extended by Jaffrezic and Pletcher (2000) aiming at relaxing its more restrictive 
assumption of stationarity of correlations. The simplest character process model uses the 
covariance function )(),( st

ststC −= ρσσ , where ),( stC  is the covariance between repeated 
measures in times t, and s, tσ  is the standard deviation of the trait in time t, and )( st−ρ  is 
the correlation between measures in times t and s. For data collected at regularly spaced 
times, this character process is equivalent to an autoregressive model with heterogeneous 
variance (ARH). 

Ante-dependence models 

The basic idea of the ante-dependence models is that one observation in time t can 
be explained by previous observations. Nunez-Anton and Zimmerman (2000) proposed 
the structured ante-dependence model in which the number of parameters is smaller than 
that in the traditional ante-dependence models. These models can deal with highly non-
stationary correlation patterns and correspond, in their simple specifications, to a non-
stationary generalisation of autoregressive models. They also consider the heterogeneity 
of variance between measures. The covariance matrix is of the form 
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Random regression models 

By the random regression model (Meyer and Hill, 1997) the treatment effect is 
modelled by �

− Φ1 * )(l
r ikir raβ , where term 

irβ denotes the set of l random regressions 

coefficients for the ith treatment, raik )( *Φ  is the rth polynomial on standardised age )( *
ika  of 

measurement k. The estimated G matrix for treatment effects is given by G = ΦBΦ’, 
where Φ is a matrix containing the random effects of the polynomials for the ages of 
measurements and B is the estimated variance-covariance matrix of the polynomial 
coefficients. 

Cubic spline models 

A cubic spline is a smooth curve over an interval formed by linked segments of 
cubic polynomials at certain knot points, such that the whole curve and its first and second 
differentials are continuous over the interval (Green and Silverman, 1994). Natural cubic 
splines can be incorporated into the standard mixed model framework (White et al., 1999; 
Verbyla et al., 1999). By the spline model, the treatment effect is modelled by 

�
−
=++ 1

210 )(q
l iklilikii tzbtbb , where 

0ib denotes the intercept for treatment i, 
1ib denotes the 

slope for treatment i and 
ilb denotes the random regression coefficient for the ith treatment 

at knot l. ikt denotes the age of measurement and )( ikl tz represents the spline coefficient 

for age 
ikt . The estimated G matrix for treatment effects is given by G = ΩZΩ’, where Ω is 
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a matrix containing the random effects of the spline for the ages of measurements and Z is 
the estimated variance-covariance matrix of the spline coefficients. 

2.4 Longitudinal spatial models for repeated measures on each trial 

In this case, the inverse of the correlated error covariance matrix is given by 
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2.5 Model comparisons 

Residual maximum likelihood ratio tests (LRT) were used to compare fitted models 
provided they had a nested structure and the same fixed effects. Other criterion for model 
selection was the Akaike Information Criterion (AIC), which penalises likelihood by the 
number of independent parameters fitted. It can be pointed out that both depend on the 
basic quantity -2 log L. All models were fitted using software ASREML (Gilmour and 
Thompson, 1998; Gilmour et al., 2002), which uses the REML procedure through the 
average information algorithm and sparse matrix techniques (Gilmour et al., 1995; 
Johnson and Thompson, 1995; Thompson et al., 2003). Software GENSTAT (Thompson 
and Welham, 2003) was also used. To date, there is no free software suitable for 
implementing these very complex models including spatial and temporal dependences 
simultaneously.  

2.6 Application 

The data set concerning tea plants came from two trials established in complete 
block designs with six plants per plot and in a spacing of 3 x 2 meters. The trait leaf 
weight was evaluated at individual level in several consecutive years. Trial 1 was 
established with 141 treatments (open pollinated progenies) and 10 replications, summing 
8,460 plants and 16,920 observations (two consecutive years). Trial 2 provided 5,400 
observations (60 treatments x 5 replications x 6 plants per plot x 3 annual measures). The 
basic model for all trials included block, treatments, plot and residual effects. 

The trait leaf weight is a continuous variable with normal distribution. This was 
confirmed by means of statistical analyses that showed symmetry in the data distribution 
as well as normality through the Shapiro-Wilk test. 

3 Results and discussion 

3.1 Univariate spatial models for individual annual measures on each trial 

Results concerning trial 1 are presented in Tables 1a  and 1b. 
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Table 1a - Summary of results concerning models 1 to 19 for trait leaf weight in the first 
year of harvest in trial 1. The estimates are: genetic variance among treatments 
(progenies) ( 2ˆτσ ), non-correlated residual variance ( 2ˆησ ), narrow sense 
heritability ( 2ĥ ), fitted narrow sense heritability ( )ˆˆ/()ˆ4(ˆ 2222

ηττ σσσ +=adjh ) 
proportional only to the unaccounted error (η), shrinkage factor 
( )ˆ4/()ˆ3ˆ( 222

1 ττη σσσλ −= ) of genetic effects in the mixed model equations and 
efficiency (Effic.) of models over model1, in terms of 2ˆ

adjh  

Block as Fixed Effect 
Model (Spatial 
–S or Not-N) 

Deviance 2ĥ  2ˆ
adjh  1λ  2ˆτσ  2ˆησ  Effic. 

1. N -3105.78 0.1413 0.1905 4.250 0.0110 0.2214 1.00 
2. S -3862.28 0.1652   0.0126   
5. S -4039.31 0.1667   0.0128   
6. S -4045.31 0.1690   0.0128   
7. S -4254.48 0.1737 0.3296 2.034 0.0134 0.1492 1.730 
8. S -4189.15 0.1788 0.3145 2.180 0.0132 0.1547 1.651 
9. N -3201.88 0.1416 0.1955 4.115 0.0111 0.2160 1.03 
10. S -4257.66 0.1728 0.3278 2.051 0.0133 0.1490 1.721 

Row as Fixed Effect 
13. N -3018.58 0.1439 0.1955 4.115 0.0111 0.2160 1.03 
14. S -4069.91 0.1737 0.3278 2.051 0.0133 0.1490 1.721 

Linear trend across rows and columns 
16. N -3085.37 0.1371 0.1864 4.366 0.0108 0.2210 0.98 
17. N -3083.82 0.1422 0.1913 4.227 0.0111 0.2210 1.004 

Row and Column as Fixed Effect 
15. N -2523.58 0.1600 0.2022 3.946 0.0115 0.2160 1.06 
19. S -3498.55 0.1792 0.3352 1.983 0.0136 0.1487 1.760 

Constant as Fixed Effect 
3. N -3137.40 0.1378 0.1905 4.250 0.0110 0.2214 1.00 
4. S -3894.34 0.1613   0.0126   

11. N -3213.00 0.1391 0.1955 4.115 0.0111 0.2160 1.03 
12. S -4283.01 0.1725 0.3276 2.052 0.0134 0.1502 1.720 
18. S -4278.02 0.1717 0.3264 2.063 0.0134 0.1508 1.713 

 
The deviance criterion is not adequate for comparing models with different fixed 

effects. So, efficiency in terms of the fitted heritability (proportional only to the 
unaccounted error) can be used for inference about the best models. The fitted narrow 
sense heritability estimates presented in the previous table refer to individual plant models 
rather then parent models. 

The two traits (sequence measurements in consecutive years) presented 
approximately the same behaviour in terms of results across models. Among the non-
spatial models, the row-column analyses (models 11, 13 and 15) performed better than the 
randomised block analyses (models 1 and 3). This can be explained by the local control in 
two directions provided by the row-column analysis and by the small block provided by 
rows since each original block was composed of six rows. Due to this last reason there 
was no need to fit blocks additionally to rows and columns (models 9, 10 and 17).  

The spatial models (2, 4, 5, 6, 7, 8, 10, 12, 14, 18 and 19) were always much better 
than the non-spatial ones (1, 3, 9, 11, 13, 15, 16 and 17) as judged by deviances of the 
models as well as by selection efficiencies in terms of the fitted heritabilities or shrinkage 
factors for treatment effects in the mixed model equations (Tables 1a and 1b). The spatial 
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models with inclusion of η (models 7, 8, 10, 12, 14, 18 and 19) were always better than 
those without η (models 2, 4, 5 and 6) as judged by deviances of the models as well as 
selection efficiencies in terms of the fitted heritabilities or shrinkage factors for treatment 
effects in the mixed model equations (Tables 1a  and 1b). 

Table 1b - Summary of results concerning models 1 to 19 for trait leaf weight in the 
second year of harvest in trial 1. The estimates are: genetic variance among 
treatments (progenies) ( 2ˆτσ ), non-correlated residual variance ( 2ˆησ ), narrow 
sense heritability ( 2ĥ ), fitted narrow sense heritability ( )ˆˆ/()ˆ4(ˆ 2222

ηττ σσσ +=adjh ) 
proportional only to unaccounted error (η), shrinkage factor ( )ˆ4/()ˆ3ˆ( 222

1 ττη σσσλ −= ) 
of genetic effects in the mixed model equations and efficiency (Effic.) of 
models over model1, in terms of 2ˆ

adjh  

Block as Fixed Effect 

Model Deviance 2ĥ  2ˆ
adjh  1λ  2ˆτσ  2ˆησ  Effic. 

1. N 11853.72 0.1688 0.2346 3.262 0.083 1.339 1.00 
2. S 11424.52 0.1900 - - 0.094 - - 
5. S 11247.98 0.1887 - - 0.093 - - 
6. S 11208.30 0.1905 - - 0.092 - - 
7. S 11089.97 0.1927 0.3465 1.886 0.0965 1.0175 1.477 
8. S 11084.85 0.1914 0.3630 1.755 0.0956 0.9669 1.547 
9. N 1168990 0.1691 0.2438 3.101 0.084 1.294 1.04 
10. S 11070.69 0.1933 0.3489 1.866 0.0965 1.0099 1.487 

Row as Fixed Effect 
13. N 11767.86 0.1730 0.2438 3.101 0.084 1.294 1.04 
14. S 11150.56 0.1961 0.3491 1.865 0.0965 1.0093 1.488 

Linear trend across rows and columns 
16. N 11926.37 0.1620 0.2282 3.383 0.081 1.339 0.97 
17. N 11872.48 0.1702 0.2361 3.235 0.084 1.339 1.006 

Row and Column as Fixed Effect 
15. N 12027.38 0.1781 0.2493 3.012 0.086 1.294 1.06 
19. S 11456.87 0.1974 0.3485 1.870 0.0964 1.0101 1.486 

Constant as Fixed Effect 
3. N 11836.52 0.1654 0.2346 3.262 0.083 1.339 1.00 
4. S 11407.16 0.1862 - - 0.094 - - 

11. N 11683.96 0.1668 0.2438 3.101 0.084 1.294 1.04 
12. S 11056.93 0.1920 0.3477 1.876 0.0966 1.0148 1.482 
18. S 11080.62 0.1907 0.3438 1.909 0.0965 1.0263 1.465 

 
Comparing models 7, 12 and 18, which led to almost the same efficiency, can see 

that keeping the design features in the analysis was not necessary. The rate of recovering 
of design features by spatial analysis is enhanced when the independent error is fitted. A 
model without plot and design features was fitted for the two traits and provided almost 
the same efficiency as model 12, showing that sometimes simple spatial models can be 
used. 

For two dimension spatial models without η (models 2 and 5), model AR2 was 
better than AR1 (change in deviance of 176.54). However, that superiority was not kept 
(change in deviance of 5.12) when models (7 and 8) with η were fitted. So, there is no 
need for AR2 in models with inclusion of η.  
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Little difference (in terms of fitted heritability), if any, was noted in fitting local 
control as fixed or random effects in the non-spatial models (model 1 against 3; 11 against 
13 or 15) and spatial models (12 against 14 and 19), with a slight superiority for fitting 
row and column as fixed effects. 

Overall, the best methods for the two traits were 12 and 14, both corresponding to a 
row-column analysis + a spatial (AR1 x AR1) + independent term error. For these best 
models, efficiency over the traditional randomised complete block analysis ranged from 
1.48 to 1.76, i.e., 48% to 76% of superiority. Improved designs can be used to have high 
efficiency when assuming a spatial model such as model 12 (establishing the experiment 
according to model 12). In other words, appropriate systematic designs are needed when 
spatial patterns are present in the field. Spatial analysis has been shown to improve the 
precision and accuracy of treatment estimates, even with designs not optimised spatially. 
It is expected that designs with good general spatial properties will further increase the 
efficiency of treatments estimates. This would permit the fitting of only one spatial model 
to all trials as advocated by Kempton et al. (1994). 

The autocorrelation coefficients for models without independent errors were 
approximately 0.21 and 0.29 for AR Column and 0.13 and 0.14 for AR Row, for the two 
traits, respectively. For models with independent errors, the autocorrelation coefficients 
were approximately 0.79 and 0.75 for AR Column and 0.50 and 0.52 for AR Row, for the 
two traits, respectively. These high autocorrelation coefficients obtained show that the AR 
process is modelling fertility gradient rather than competition. This is coherent with the 
spacing used (3 by 2 meters) and with crop management in which all the leaves are 
harvested each year. These features tend to prevent above ground competition between 
plants. 

Models with splines were also tried, some extending the previous model 12 and 
others using only splines to account for spatial variation. Results are presented in Table 2. 

It can be seen that the extended model 12 did not improve the fit through the 
inclusion of splines. The deviances of the extended models were higher as the spline 
variance component is constrained to be positive, but the efficiencies in terms of the fitted 
heritability were practically the same (Table 2).  

The approach using splines in place of AR(1) x AR(1) process for modelling spatial 
variation was suggested by Kempton (1999) and used by Durban et al. (2001). In our data 
set, such approach showed to be very inefficient, being comparable only with the random 
row and column analysis (model 11). 

Results concerning individual analysis of trial 2 of tea plants are presented in 
Table 3. 

It can be seen that the best models for all three traits were 7 (complete block design 
+ (AR1 x AR1) + η) and 12 (row-column design + (AR1 x AR1) + η) in terms of 
efficiency over base model 1 (block analysis) and deviance values. The efficiencies 
(between 1.09 and 1.16) were in general much lower than the previous ones (of the order 
of 1.48 to 1.76) reported for trial 1. This is because there is much less environmental 
variability in this trial as revealed by the low significance of block effects for two of the 
three traits. Due to the same reason, the efficiencies of row-column over block designs 
were small or did not exist in this case. For the trait leaf weight 1, block and row effects 
should not be fitted as fixed because they were non-significant. So, the results concerning 
models 1, 11, 13 and 15 are not comparable for trait 1. 
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Table 2 - Results concerning some models for trait leaf weight in the first two years of 
harvest in trial 1. The estimates are: genetic variance among treatments 
(progenies) ( 2ˆτσ ), non-correlated residual variance ( 2ˆησ ), fitted narrow sense 
heritability ( )ˆˆ/()ˆ4(ˆ 2222

ησσσ += ggadjh ) proportional only to the unaccounted error (η) 
and efficiency (Effic.) of models over model 1, in terms of 2ˆ

adjh . Spl(rc) means 
cubic splines applied on row and columns 

 Model  Deviance 2ˆ
adjh  2ˆτσ  2ˆησ  Eff. 

Leaf weight 1 – Trial 1 
1 -3105.78 0.1905 0.0110 0.2214 1.00 
11 -2523.58 0.1955 0.0111 0.2160 1.03 

Spl(rc) -3202.72 0.1961 0.0112 0.2173 1.03 
12 -4283.01 0.3276 0.0134 0.1502 1.72 

12 + Spl(rc) -4270.12 0.3302 0.0134 0.1489 1.73 
Leaf weight  2 – Trial 1 

1 11853.72 0.2346 0.0830 1.3390 1.00 
11 11683.96 0.2438 0.0840 1.2940 1.04 

Spl(rc) 11731.32 0.2464 0.0852 1.2979 1.05 
12 11056.93 0.3477 0.0966 1.0148 1.48 

12 + Spl(rc) 11070.08 0.3492 0.0965 1.0088 1.49 

Table 3 - Results concerning some models for trait leaf weight in the first three years of 
harvest in trial 2. The estimates are: genetic variance among treatments 
(progenies) ( 2ˆτσ ), non-correlated residual variance ( 2ˆησ ) and fitted narrow sense 
heritability ( )ˆˆ/()ˆ4(ˆ 2222

ησσσ += ggadjh ) proportional only to unaccounted error (η) 
and efficiency (Effic.) of models over model 1, in terms of 2

âdjh  

Model Deviance 2ˆ
adjh  2ˆτσ  2ˆησ  Eff Local Control 

(signif.) 
Leaf weight 1 

      1 -1964.99   0.4778 0.0137±0.004 0.1010±0.004 1.00 Not sig. 
      7 -2038.17   0.5248 0.0140±0.004 0.0927±0.004 1.10  
     11 -1995.02   0.4633 0.0131±0.004 0.1000±0.004 0.97  
     12 -2059.70   0.5198 0.0138±0.004 0.0924±0.004 1.09 Not sig. 
     13 -1855.95   0.4602 0.0130±0.004 0.1000±0.004 0.96 Row (R)* 
     15 -1661.66   0.3899 0.0108±0.004 0.1000±0.004 0.82 C**;R* 

Leaf weight 2 
      1 830.15 0.7076 0.1038±0.03 0.483±0.02 1.00 * 6% 
      7 703.19 0.7931 0.1061±0.02 0.429±0.02 1.12  
     11 795.78 0.7128 0.1017±0.03 0.469±0.02 1.01  
     12 686.88 0.7934 0.1059±0.02 0.428±0.02 1.12 Not sig. 
     13 871.88 0.7134 0.1018±0.03 0.469±0.02 1.01 R** 
     15                                        984.87 0.6416 0.0896±0.03 0.469±0.02 0.91 C**;R* 

Leaf weight 3 
      1 3415.14 0.5887 0.345±0.10 1.999±0.07 1.00 ** 
      7 3215.12 0.6852 0.351±0.08 1.698±0.07 1.16  
     11 3379.20 0.6041 0.335±0.10 1.883±0.07 1.03  
     12 3212.90 0.6849 0.350±0.08 1.694±0.07 1.16 Not sig. 
     13 3378.11 0.6069 0.337±0.10 1.884±0.07 1.03 R** 
     15 3401.23 0.5176 0.280±0.10 1.884±0.07 0.88 R**;C ns 
     18                                        3213.71 0.6858 0.352±0.08 1.701±0.07 1.16  
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For this trial, column effects should not be fitted as fixed (model 15) as it is so small 
(size 30) and genetic information would be lost. With spatial analysis and inclusion of the 
independent error in the model, there was no need to include the design features in the 
model, even when the block effects were significant (trait 3). It can be seen from the 
deviance values that the model 7 and 18 were equivalent (Table 3). The auto-correlation 
coefficients were of the order of 0.80 and 0.90 between rows and columns, respectively, 
for the three traits (0.79 and 0.87; 0.79 and 0.87; 0.81 and 0.90, for traits 1, 2 and 3, 
respectively, according to the model 12). 

3.2 Longitudinal non-spatial models for several measures on each trial 

Results concerning repeatability and full unconstrained (bivariate in this case) 
models for the repeated measures in trial 1 are presented in Table 4. Block, measure and 
block x measure interaction effects were fitted as fixed.  

Table 4 -  Estimates of the variance parameters: genetic among treatments (progenies) 
( 2ˆτσ ), among plots ( 2ˆκσ ), permanent ( 2ˆ ρσ ) and residual ( 2ˆησ ), using the 
repeatability and full unconstrained (bivariate) models 

Original data in trial 1. 

 Repeatability 
Model 

Bivariate 
Model* 

Parameters 
estimates Both weights Leaf weight 1 Leaf weight 2 Between weights 

2ˆτσ  0.1913 0.0462 0.4397 0.1393 
2ˆκσ  0.0739 0.0365 0.13854 0.0711 
2ˆ ρσ  0.3038 - - - 
2ˆησ  0.5413 0.2214 1.3390 0.3687 

Deviance 14173.70 3357.02 
Standardised data in trial 1. 

 Repeatability 
Model 

Bivariate 
Model* 

Parameters 
estimates Both weights Leaf weight 1 Leaf weight 2 Between weights 

2ˆτσ  0.1799 0.1488 0.2184 0.1763 
2ˆκσ  0.0848 0.1176 0.0764 0.0982 
2ˆ ρσ  0.4541 - - - 
2ˆησ  0.2465 0.7124 0.6649 0.4661 

Deviance 7637.22 7316.52 
 
The associated repeatability coefficient was 0.51, which can be classified as 

intermediate. The genetic correlation coefficient between the two measures in the full 
unconstrained (bivariate) analysis was 0.98. These results show that the trait is probably 
not changing so much genetically from one another measure or age. However, it can be 
seen that there is heterogeneity of variance between the measures. The deviance values 
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show that the bivariate model is much better than the repeatability model. This justifies 
the preference for the bivariate model.  

With standardised data (divided by the phenotypic standard deviation from 
individual analysis for each measure), the associated repeatability coefficient was 0.75, 
which is higher than the previous one. Standardisation led to an increased permanent 
variance estimate, while the others (except by the independent error) variance components 
were kept approximately constant (in comparison to the data in original scale) by the 
repeatability model. The genetic correlation coefficient between the two measures in the 
bivariate analysis was 0.98, which was the same as in the previous analysis. However, it 
can be seen that the heterogeneity of variance was reduced after standardisation. The 
deviance values show that the repeatability and bivariate models became closer after 
standardisation. 

Nevertheless, the AIC values were 7334.52 and 7645.22 for the bivariate and 
repeatability models. This shows that the bivariate model, although less parsimonious, is 
still better than the repeatability model. So, in practice, the bivariate model should be used 
for selection. In case the repeatability model is chosen, the data should at least be 
standardised. The use of the bivariate model for selection implies giving weight to genetic 
values predicted for the two measures. These weights should be 0.5, if the two ages have 
equal importance. If the last measure provides a better representation of a mature trait, 
higher weight should be given to this measure. Nonetheless, the high genetic correlation 
may suggest that the weights should be 0.5 for each measure.   

Estimates for the full (multivariate) model with original data in trial 2 are presented 
in Table 5. Block, measure and block x measure interaction effects were fitted as fixed. 

Table 5 - Estimates of the variance and covariance parameters for the full (multivariate) 
model with original data in trial 2 concerning three repeated measures. Number 
of parameters equal to 18 

Treatment (genetic)  Plot Residual 
Covar.\Variance\Correl. Covar.\Variance\Correl. Covar.\Variance\Correl. 

0.0134 0.9239 0.9984 0.0248 0.8638 0.7095 0.1011 0.6766 0.6128 
0.0342 0.1020 0.9211 0.0422 0.0964 0.9123 0.1495 0.4827 0.7686 
0.0673 0.1711 0.3380 0.0817 0.2072 0.5352 0.2755 0.7551 1.9990 

Deviance = -787.172 
 
The deviance value (Table 5) reveals that the full multivariate model is far more 

suitable for the original data than the repeatability model (deviance 5070.64, results not 
shown). Such model gave high values for the genetic correlations between pairs of 
measures. The correlations were all within the parameter space but the model had to be 
constrained to achieve this. Without constraining the G matrix to be positive definite, 
correlations higher than 1 and negative variance components were obtained. In the 
constrained model, the G matrix is bent and this process involves shrinking the variances 
towards their mean. The unconstrained analysis is less biased because bias is introduced 
when constraining the solution to the parameter space. Convergence was more difficult as 
the number of measures increased. So, more suitable models needed to be searched. 

Results concerning the character process model, called first-order autoregressive 
with heterogeneous variance (ARH) for the treatments effects, are presented in Table 6. 
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Table 6 - Estimates of the variance and covariance parameters for the character process 
model, called first order autoregressive with heterogeneous variance (ARH) 
applied to original data in trial 2, concerning three repeated measures. Number 
of parameters equal to 16 

Treatment (genetic)  Plot Residual 
Covar.\Variance\Correl. Covar.\Variance\Correl. Covar.\Variance\Correl. 

0.0129 0.9761 0.9528 0.0254 0.8667 0.7532 0.1011 0.6766 0.6128 
0.0357 0.1033 0.9761 0.0430 0.0968 0.9109 0.1495 0.4827 0.7686 
0.0619 0.1792 0.3261 0.0891 0.2104 0.5510 0.2755 0.7551 1.9990 

Deviance =  -782.94 
 
The ARH and multivariate models presented almost the same deviance and the AIC 

values were -750.94 and -751.17, respectively, which are basically the same –751. So, the 
two models are equivalent by the parsimony criterion. However, ARH presented easy 
convergence without constraining the G matrix to be positive definite, fitted a small (two 
less than the full multivariate model) number of parameters and gave correlations within 
the parameter space. Besides, it gave a more realistic correlation between the most distant 
measures 1 and 3. The ARH model is then much preferred. Such model assumes 
stationarity and same correlation in all intervals of same lag. 

An other model evaluated was the structured ante-dependence model (SAD), which 
also has parsimony and does not assume stationarity. Results are presented in Table 7. 

Table 7 - Estimates of the variance and covariance parameters for the structured ante-
dependence model (SAD) with original data in trial 2, concerning three 
repeated measures. Number of parameters equal to 17 

Treatment (genetic)  Plot Residual 
Covar.\Variance\Correl. Covar.\Variance\Correl. Covar.\Variance\Correl. 

0.0128 0.9840 0.9580 0.0254 0.8667 0.7532 0.1011 0.6766 0.6128 
0.0358 0.1032 0.9730 0.0430 0.0968 0.9109 0.1495 0.4827 0.7686 
0.0618 0.1784 0.3250 0.0891 0.2104 0.5510 0.2755 0.7551 1.9990 

Deviance =  -783.04 
 
The SAD and ARH models presented basically the same deviance (-783) and are 

then equivalent by this criterion. Nonetheless, the SAD model fitted one parameter more 
than the ARH model and is not preferred, in terms of parsimony by the AIC rule. The 
results for plot and residual effects were exactly the same by the two models. The genetic 
components were slightly different but are both coherent in terms of the magnitude of the 
correlation coefficients, i.e., smaller for lag 1-3. This was not seen in the full multivariate 
model. Both models could be used efficiently in practice. The SAD model allows for 
different correlation for lags of same size. 

These two classes of models were also used for modelling the other random terms of 
the model. Results concerning correlations for treatment and plot terms modelled by ARH 
and SAD are presented in Table 8. 
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Table 8 - Estimates of the correlation parameters for the structured ante-dependence 
model (SAD) and character process (ARH) for modelling both the treatment 
and plot effects. An original data set in trial 2 (three repeated measures) was 
used. Number of parameters equal to 16 and 14 for SAD and ARH, 
respectively. 

Treatment (genetic)  Plot Residual 
ARH\SAD ARH\SAD ARH\SAD 

- 0.990 0.968 - 0.851 0.769 - 0.6766 0.6128 
0.982 - 0.977 0.882 - 0.903 0.6766 - 0.7686 
0.964 0.982 - 0.778 0.882 - 0.6128 0.7686 - 

Deviance ARH\SAD =  -780.76\-782.20 
 

The results show that the plot effect can be perfectly modelled by the ARH or SAD 
process. The deviance values were close to the previous one where the plot effect was 
modelled in a full multivariate fashion. The AIC values here were –752.76 and –750.20 
for ARH and SAD, respectively, which are close to values –751 and –749 for ARH and 
SAD, respectively, obtained with the two models but with multivariate plot effect. 
Comparing these four AIC values, the choice is for the ARH model for both treatments 
and plot effects (AIC –752.76). 

The modelling of the residual term by the ARH was also evaluated. The resulting 
deviance for modelling the three effects simultaneously as an ARH process gave a 
deviance of only –677.46. Also the residual correlations obtained were very different than 
the previous ones. Then, the residual should be modelled in a full multivariate way. 

Other approaches were also evaluated. The banded correlation or Toeplitz model 
converged with a deviance of –794.28. Nevertheless, it gave a genetic correlation higher 
than one, and only the correlation was supposed to be the small one. This model assumes 
equal correlation for lags of same size as does the ARH model, but the elements of the 
several diagonals are different and not a function of the correlation for lag 1.  

Random regression models were also tried and results are presented in Table 9 for 
the full and reduced models. 

Table 9 - Estimates of the variance and covariance parameters for the random regression 
model with original data in trial 2 concerning three repeated measures  

Full model (quadratic fit) with number of parameters equal to 18. 
Treatment (genetic)  Plot Residual 

Covar.\Variance\Correl. Covar.\Variance\Correl. Covar.\Variance\Correl. 
0.0134 0.9239 0.9984 0.0248 0.8638 0.7095 0.1011 0.6766 0.6128 
0.0342 0.1020 0.9211 0.0422 0.0964 0.9123 0.1495 0.4827 0.7686 
0.0673 0.1711 0.3380 0.0817 0.2072 0.5352 0.2755 0.7551 1.9990 

Deviance =  -787.172 
Reduced model (linear fit) with number of parameters equal to 15. 

Treatment (genetic)  Plot Residual 
Covar.\Variance\Correl. Covar.\Variance\Correl. Covar.\Variance\Correl. 

0.0098 1.0552 1.0765 0.0248 0.8638 0.7095 0.1011 0.6766 0.6128 
0.0331 0.1004 1.0040 0.0422 0.0964 0.9123 0.1495 0.4827 0.7686 
0.0563 0.1677 0.2791 0.0817 0.2072 0.5352 0.2755 0.7551 1.9990 

Deviance =  -777.08 
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 Results were identical to those (which were not suitable) from the full multivariate 
analysis as expected for the full fitting of the random regression model, i.e., for fitting a 
quadratic polynomial. In a search for parsimony a reduced fit was tried. The deviance 
(-777) of the model is higher than that (-783) obtained from the ARH and SAD models for 
treatment effects (Tables 8 and 9). The AIC value is –747, which is higher than that 
obtained for the ARH (-751) and SAD (-749) models. So, the reduced random regression 
model is not a choice. Also, this model showed a poor reconstruction of the G matrix for 
treatment effects leading all correlations to be higher than 1 (Table 9). These results are in 
accordance with Apiolaza et al. (2000), who found that random regression models were 
often inappropriate. 

The fit of smoothing cubic splines was also tried. The deviance obtained was only –
748.33, which was the worst between the parsimonious models tried. This result was 
expected as function of the small number of ages available for fitting. In conclusion, the 
best approaches for trial 2 were the ARH and SAD models for treatment and plot effects. 
These models should be extended and used in conjunction with the spatial models for the 
residuals. 

3.3 Longitudinal spatial models for repeated measures on each trial 

Results concerning the multivariate spatial model for trial 1 are presented in Table 
10. 

Table 10 - Estimates of the variance parameters: genetic variance among treatments 
(progenies) ( 2ˆτσ ), among plots ( 2ˆκσ ), residual ( 2ˆησ ) and respective 
covariance and correlation by the full multivariate spatial model for leaf 
weight in trial 1 

Covariance Variance Correlation 
Parameters estimates 

Between weights Leaf weight 1 Leaf weight 2 Between 
weights 

2ˆτσ  (Treatment) 0.1390 0.0465 0.4386 0.9736 
2ˆκσ  (Plot) 0.0251 0.0068 0.0975 0.9771 

2ˆησ  (Independent Error) 0.3378 0.1952 1.3030 0.6697 
Deviance = 2764.12 
 

 It can be seen that the full multivariate spatial model is the best option for the 
analysis and selection concerning this experiment. The deviance of this model (2764.12) 
is much lower than that of the full multivariate (bivariate) non-spatial model (3357.02). 
The models fitted 11 and 9 random effects and the AIC values were 2786.12 and 3375.02 
for the full multivariate spatial and non-spatial models, respectively. So, the choice is for 
the full multivariate spatial model. The genetic variance components stayed almost the 
same as in the multivariate non-spatial model. However, the plot variances were greatly 
reduced. The residual variances were also reduced by spatial analysis as expected. The 
genetic correlation showed about the same magnitude as in the non-spatial analysis. In 
conclusion, for trial 1, the selection should be practised according to the bivariate spatial 
analysis. 
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For trial 2, the superior approaches for analysing the repeated measures were 
extended by incorporating spatially correlated residuals. Three models were tried: ARH 
for treatments, ARH for treatments and plots and SAD for treatments and plots. The 
deviance values obtained were not lower than that obtained with the best non-spatial 
models and, the autocorrelation parameters approached 1, revealing that there is no need 
for spatial analysis for this multivariate data. This was expected as the efficiency of spatial 
analysis for the univariate case in this experiment was low as a function of the low 
environmental variability in the trial. In the multivariate case for the repeated measures, 
the amount of information about one individual increase and the model is automatically 
improved making it more difficult to add important information from the spatial analysis. 
Besides, the autocorrelation estimates approached 1, revealing that the estimated 
correlated error was of small magnitude. 

4 Final conclusions 

For longitudinal data or repeated measured traits (sequence measurements in 
consecutive years) in perennial crops, which exhibit considerable variance heterogeneity 
between traits and high correlation between measures, the repeatability and the full 
unconstrained models are not adequate, revealing a need for new modelling. In general, 
the best approaches involved the modelling of treatment effects by ante-dependence 
(SAD) or auto-regressive models with heterogeneous variance (ARH). When spatial 
effects are important, a combination of the first-order spatial auto-regressive approach for 
modelling errors and a multivariate (including simpler options such as SAD and ARH) 
approach for modelling treatments effects should be used. 
 
RESENDE, M. D. V. de; THOMPSON, R.; WELHAM, S. Análise estatística espacial 
multivariada de dados longitudinais em culturas perenes. Rev. Mat. Est., São Paulo, v. 24, 
n.1, p.147-169, 2006. 

��RESUMO: As vantagens do uso da análise espacial em experimentos com culturas anuais estão 
bem documentadas. Para culturas perenes existem muito menos evidências. Aparentemente não 
existem artigos publicados tratando da análise espacial de medidas repetidas em culturas perenes. 
Este trabalho objetivou a comparação de vários modelos nesse contexto, incluindo as classes de 
modelos autoregressivos, de ante-dependência e de processo caráter, na modelagem de medidas 
repetidas em  plantas perenes. O uso de modelos alisados parcimoniosos, incluindo splines, 
foram também investigados. Para a seleção de modelos foram utilizados o teste da razão de 
verossimilhança (LRT) e o critério de informação de Akaike (AIC). Foram analisadas, por meio 
de vários modelos espaciais e não espaciais, 22.320 observações associadas a cinco medições 
anuais repetidas em dois experimentos de erva-mate. As classes de modelos usados foram: (1) 
modelos espaciais univariados para medições anuais individuais em cada ensaio; (2) modelos 
não espaciais para dados longitudinais aplicados sobre todas as medidas repetidas em cada 
ensaio; (3) modelos espaciais para dados longitudinais aplicados sobre todas as medidas 
repetidas em cada ensaio, ou seja, simultânea análise da dependência espacial e temporal. Os 
principais resultados obtidos foram: para as análises individuais o melhor modelo, dentre 19 
avaliados, contemplou os efeitos de linha e coluna da grade experimental mais um erro 
correlacionado espacial autoregressivo de primeira ordem (AR1 x AR1) (propiciando 
superioridade entre 9% e 76% sobre a tradicional análise em blocos, em termos da razão entre as 
herdabilidades ajustadas associadas aos modelos espaciais e não espaciais);  modelos com erro 
espacial autoregressivo de segunda ordem (AR2 x AR2) não foram superiores aos modelos com 
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erro (AR1 x AR1); as diferentes medidas repetidas apresentaram aproximadamente o mesmo 
comportamento em termos de resultados através dos diferentes modelos; os modelos de 
repetibilidade e multivariado não foram totalmente adequados para a análise de medidas 
repetidas, as quais exibiram considerável heterogeneidade de variâncias, revelando a necessidade 
da adoção de novas modelagens. Em geral, as melhores abordagens envolveram a modelagem 
dos efeitos de tratamentos por modelos autoregressivos (ARH) e de ante-dependência (SAD) 
com variâncias heterogêneas. Quando os efeitos espaciais são importantes, a combinação de 
modelos autoregressivos para os resíduos e modelos SAD ou ARH para os efeitos de 
tratamentos, deve ser usada na análise de medidas repetidas em plantas perenes. 

��PALAVRAS-CHAVE: Medidas repetidas; tendência ambiental; modelos mistos; reml; blup; 
modelos autoregressivos; modelos ante-dependência. 
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